Geochemistry and Life at the Interfaces of Brine-Filled Deeps in the Red Sea

  • André AntunesEmail author
  • Stein Kaartvedt
  • Mark Schmidt
Part of the Springer Oceanography book series (SPRINGEROCEAN)


The deep-sea brines of the Red Sea are unusual extreme environments and form characteristically steep gradients across the brine-seawater interfaces. Due to their unusual nature and unique combination of physical-chemical conditions these interfaces provide an interesting source of new findings in the fields of geochemistry, geology, microbiology, biotechnology, virology, and general biology. The current chapter summarizes recent and new results in the study of geochemistry and life at the interfaces of brine-filled deeps of the Red Sea.



Most of the geochemical sampling and analytical work associated with the new data presented here has been conducted within the Jeddah-Transect Project ( The collaboration of the Jeddah Transect Project between King Abdulaziz University and Helmholtz-Center for Ocean Research GEOMAR Kiel was funded by King Abdulaziz University (KAU) Jeddah, Saudi Arabia, under grant No. T-065/430-DSR. Moreover, geochemical data is presented which is based on interface sampling during RV Meteor cruises (ME44/3 and 52/3). Analytical support by D. Garbe-Schönberg, H. Erlenkeuser, and M. Böttcher was highly welcome.

Overall, the work presented in this chapter is the outcome of several years of research in this field. The authors are particularly indebted to former colleagues at the University of Regensburg, and at the Red Sea Research Center, Computational Bioscience Research Center, and the Coastal and Marine Resource Core Laboratory of the King Abdullah University of Science and Technology (KAUST). Part of the research presented here has been funded by the FCT (Fundação para a Ciência e a Tecnologia, Portugal), DFG (Deutsche Forschungsgemeinschaft, Germany), and SEDCO (Saudi Economic and Development Company, Saudi Arabia).


  1. Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H, Siam R (2014) Aerobic methanotrophic communities at the Red Sea brine–seawater interface. Front Microbiol 5:487CrossRefGoogle Scholar
  2. Alam I, Antunes A, Kamau AA, Kalkawati M, Stingl U, Bajic VB (2013) INDIGO—Integrated data warehouse of microbial genomes with examples from the Red Sea extremophiles. PLoS ONE 8(12):e82210. Scholar
  3. Albarakati AMA, McGinnis DF, Ahmad F, Linke P, Dengler M, Feldens P, Schmidt M, Al-Farawati R (2016) Thermal small steps staircase and layer migration in the Atlantis II Deep, Red Sea. Arab J Geosci 9:392. Scholar
  4. Antunes A (2017) Extreme Red Sea: life in the deep-sea anoxic brine lakes. In: Agius DA, Khalil E, Scerri E, Williams A (eds) Human interaction with the environment in the Red Sea: selected papers of red Sea Project VI. E. J. Brill, Leiden, Netherlands, pp 30–47. ISBN 978-9004326033.
  5. Antunes A, Eder W, Fareleira P, Santos H, Huber R (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. Extremophiles 7(1):29–34CrossRefGoogle Scholar
  6. Antunes A, França L, Rainey FA, Huber R, Nobre MF, Edwards KJ, da Costa MS (2007) Marinobacter salsuginis sp. nov., isolated from the brine–seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57(5):1035–1040CrossRefGoogle Scholar
  7. Antunes A, Rainey F, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2008a) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled Deep of the Red Sea. J Bacteriol 190:3580–3587CrossRefGoogle Scholar
  8. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008b) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58(1):215–220CrossRefGoogle Scholar
  9. Antunes A, Alam I, Bajic VB, Stingl U (2011a) Genome sequence of Salinisphaera shabanensis, a gammaproteobacterium from the harsh, variable environment of the brine-seawater interface of the Shaban Deep in the Red Sea. J Bacteriol 193(17):4555–4556CrossRefGoogle Scholar
  10. Antunes A, Ngugi DK, Stingl U (2011b) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3(4):416–433CrossRefGoogle Scholar
  11. Antunes A, Alam I, Simões MF, Daniels C, Ferreira AJS, Siam R, El-Dorry H, Bajic VB (2015) First insights into the viral communities of the deep-sea anoxic brines of the Red Sea. Genomics Proteomics Bioinform 13(5):304–309CrossRefGoogle Scholar
  12. Antunes A, Simões MF, Crespo-Medina M, Vetriani C, Shimane Y (2017a) Salinisphaera. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, New York, NY.
  13. Antunes A, Simões MF, Grötzinger SW, Eppinger J, Bragança J, Bajic VB (2017b) Bioprospecting archaea: focus on extreme halophiles. In: Patterson R, Lima N (eds) Bioprospecting: success, potential and constraints. Topics in biodiversity and conservation, vol 16. Springer, Berlin, pp 81–112. ISBN 978-3319479330. Scholar
  14. Anschutz P (2015) Hydrothermal activity and paleoenvironments of the Atlantis II Deep. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 235–249Google Scholar
  15. Anschutz P, Blanc G, Chatin F, Geiller M, Pierret MC (1999) Hydrographic change during 20 years in the brine-filled basins of the Red Sea. Deep Sea Res 46:1779–1792CrossRefGoogle Scholar
  16. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187. Scholar
  17. Botz R, Schmidt M, Kus J, Ostertag-Henning C, Ehrhardt A, Olgun N, Garbe-Schönberg D, Scholten J (2011) Carbonate recrystallisation and organic matter maturation in heat-affected sediments from the Shaban Deep, Red Sea. Chem Geol 280:126–143CrossRefGoogle Scholar
  18. Botz R, Schmidt M, Wehner H, Hufnagel H, Stoffers P (2007) Organic-rich sediments in brine-filled Shaban and Kebrit Deeps, northern Red Sea. Chem Geol 244:520–553. Scholar
  19. Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, Qian PY (2013) Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 79(11):3425–3437CrossRefGoogle Scholar
  20. Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Ann Rev Mar Sci 1:143–168CrossRefGoogle Scholar
  21. Cordes EE, Hourdez S, Roberts HH (2010) Unusual habitats and organisms associated with the cold seeps of the Gulf of Mexico. In: Kiel S (ed) The vent and seep biota: aspects from microbes to ecosystems. Topics in geobiology, vol 33. Springer, Berlin, pp 315–332Google Scholar
  22. Degens E, Ross DA (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New YorkCrossRefGoogle Scholar
  23. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172(4):213–218CrossRefGoogle Scholar
  24. Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67(7):3077–3085CrossRefGoogle Scholar
  25. Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4(11):758–763CrossRefGoogle Scholar
  26. Fiala G, Woese CR, Langworthy TA, Stetter KO (1990) Flexistipes sinusarabici, a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch Microbiol 154(2):120–126CrossRefGoogle Scholar
  27. Guan Y, Hikmawan T, Antunes A, Ngugi D, Stingl U (2015) Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol 166(9):688–699CrossRefGoogle Scholar
  28. Hartmann M, Scholten JC, Stoffers P, Wehner F (1998) Hydrographic structure of brine-filled deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330CrossRefGoogle Scholar
  29. Kaartvedt S, Antunes A, Røstad A, Klevjer TA, Vestheim H (2016) Zooplankton at deep Red Sea brine pools. J Plankton Res 38(3):679–684CrossRefGoogle Scholar
  30. La Cono V, Arcadi E, Spada GL, Barreca D, Laganà G, Bellocco E, Catalfamo M, Smedile F, Messina E, Giuliano L, Yakimov MM (2015) A three-component microbial consortium from deep-sea salt-saturated anoxic Lake Thetis links anaerobic glycine betaine degradation with methanogenesis. Microorganisms 3(3):500–517CrossRefGoogle Scholar
  31. Monin AS, Litvin VM, Podrazhansky AM, Sagalevich AM, Sorokhtin OG, Voitov VI, Yastrebov VS, Zonenshain LP (1982) Red Sea submersible research expedition. Deep Sea Res Part A Oceanogr Res Pap 29(3):361–373CrossRefGoogle Scholar
  32. Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Kamau AA, Ngugi DK, Göker M, Klenk HP, Bajic V, Stingl U (2016) Metabolic traits of an uncultured archaeal lineage-MSBL1-from brine pools of the Red Sea. Sci Rep 6:19181CrossRefGoogle Scholar
  33. Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H (2015) Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9(2):396–411CrossRefGoogle Scholar
  34. Ngugi DK, Blom J, Stepanauskas R, Stingl U (2016) Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J 10(6):1383–1399CrossRefGoogle Scholar
  35. Nigro LM, Hyde AS, MacGregor BJ, Teske A (2016) Phylogeography, salinity adaptations and metabolic potential of the candidate Division KB1 Bacteria based on a partial single cell genome. Front Microbiol 7:1266CrossRefGoogle Scholar
  36. Oliver PG, Vestheim H, Antunes A, Kaartvedt S (2015) Systematics, functional morphology and distribution of a bivalve (Apachecorbula muriatica gen. et sp. nov.) from the rim of the ‘Valdivia Deep’ brine pool in the Red Sea. J Mar Biol Assoc UK 95(03):523–535CrossRefGoogle Scholar
  37. Pätzold J, Halbach PE, Hempel G, Weikert H (2000) Östliches Mittelmeer—Nördliches Rotes Meer 1999, Cruise No. 44, 22 January–16 May 1999. METEOR-Berichte, Universität Hamburg, 00-3, p 240Google Scholar
  38. Pätzold J, Bohrmann G, Hübscher C (2003) Black Sea–Mediterranean–Red Sea, Cruise No. 52, January 2–March 27, 2002. METEOR-Berichte, Universität Hamburg, 03-2, p 178Google Scholar
  39. Pfannkuche O (1993) Benthic standing stock and metabolic activity in the bathyal Red Sea from 17°N to 27°N. Mar Ecol 14(1):67–79CrossRefGoogle Scholar
  40. Sagar S, Esau L, Hikmawan T, Antunes A, Holtermann K, Stingl U, Bajic VB, Kaur M (2013a) Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea. BMC Complement Altern Med 13:29CrossRefGoogle Scholar
  41. Sagar S, Esau L, Holtermann K, Hikmawan T, Zhang G, Stingl U, Bajic VB, Kaur M (2013b) Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement Altern Med 13:344CrossRefGoogle Scholar
  42. Schmidt M, Al-Farawati R, Al-Aidaroos A, Kürten B (2013) RV PELAGIA Fahrtbericht/ Cruise Report 64PE350/64PE351-JEDDAH-TRANSECT; 08.03.-05.04.2012 Jeddah-Jeddah, 06.04-22.04.2012 Jeddah-Duba. GEOMAR Report, N. Ser. 005, GEOMAR Helmholtz Centre for Ocean Research Kiel, p 154.
  43. Schmidt M, Al-Farawati R, Botz R (2015) Geochemical classification of brine-filled Red Sea deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 219–233. ISBN 978-3-662-45200-4. Scholar
  44. Schmidt M, Botz R, Faber E, Schmitt M, Poggenburg J, Garbe-Schönberg D, Stoffers P (2003) High-resolution methane profiles across anoxic brine-seawater boundaries in the Atlantis-II, Discovery, and Kebrit deeps (Red Sea). Chem Geol 200:359–376CrossRefGoogle Scholar
  45. Schmidt M, Devey C, Eisenhauer A (2011) FS Poseidon Fahrtbericht/ Cruise Report P408-The Jeddah Transect; Jeddah-Jeddah, Saudi Arabia, 13.01.-02.03.2011 IFM-GEOMAR Report 46. IFM-GEOMAR, Kiel, p 80Google Scholar
  46. Scholten J, Stoffers P, Garbe-Schönberg D, Moammar M (2000) Hydrothermal mineralization in the Red Sea. In: Cronan DS (ed) Marine mineral deposits. CRC Press, Boca Raton, pp 369–395Google Scholar
  47. Seeberg-Elverfeldt IA, Lange CB, Pätzold J (2004) Preservation of siliceous microplankton in surface sediments of the northern Red Sea. Mar Micropaleontol 51:193–211CrossRefGoogle Scholar
  48. Swift SA, Bower AS, Schmitt RW (2012) Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea. Deep-Sea Res I 64:118–128CrossRefGoogle Scholar
  49. Trüper HG (1969) Bacterial sulfate reduction in the Red Sea hot brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 263–271CrossRefGoogle Scholar
  50. Van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307(5706):121–123CrossRefGoogle Scholar
  51. Vestheim H, Kaartvedt S (2016) A deep sea community at the Kebrit brine pool in the Red Sea. Mar Biodiv 46(1):59–65CrossRefGoogle Scholar
  52. Vetriani C, Crespo-Medina M, Antunes A (2014) The family Salinisphaeraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Gammaproteobacteria. Springer, Berlin, pp 591–596. Scholar
  53. Watson SW, Waterbury JB (1969) The sterile hot brines of the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, New York, pp 272–281CrossRefGoogle Scholar
  54. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments: isotope evidence. Org Geochem 10:759–768CrossRefGoogle Scholar
  55. Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, Borghini M, Monticelli LS, Rojo D, Barbas C, Golyshina OV (2013) Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep 3:3554CrossRefGoogle Scholar
  56. Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33(7):1433–1442CrossRefGoogle Scholar
  57. Young RA, Ross DA (1974) Volcanic and sedimentary processes in the Red Sea axial trough. Deep-Sea Res Oceanogr Abstr 21(4):289–297CrossRefGoogle Scholar
  58. Zhang G, Haroon MF, Zhang R, Hikmawan T, Stingl U (2016a) Draft genome sequence of Pseudoalteromonas sp. strain XI10 isolated from the brine-seawater interface of Erba Deep in the Red Sea. Genome Announc 4(2):e00109–16Google Scholar
  59. Zhang G, Haroon MF, Zhang R, Hikmawan T, Stingl U (2016b) Draft genome sequences of two Thiomicrospira strains isolated from the brine-seawater interface of Kebrit Deep in the Red Sea. Genome Announc 4(2):e00110–16Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyEdge Hill UniversityLancashireUK
  2. 2.Department of BiosciencesUniversity of OsloOsloNorway
  3. 3.GEOMAR Helmholtz, Centre for Ocean Research KielKielGermany

Personalised recommendations