Oceanization Starts at Depth During Continental Rupturing in the Northern Red Sea

  • Marco LigiEmail author
  • Enrico Bonatti
  • William Bosworth
  • Sara Ronca


We present here 3D seismic reflection and gravity data obtained from an off-axis area of the NW Red Sea, as well as results of a study of gabbroic rocks recovered in the same area both from an oil well below a thick evaporitic-sedimentary sequence, and from a layered mafic complex exposed on the Brothers Islets. These new data provide constraints on the composition, depth of emplacement and age of early syn-rift magma intrusions into the deep crust. The Brothers are part of a series of sub-parallel NW-striking topographic highs associated with SW-dipping extensional fault blocks with significant footwall uplift during rifting that brought early syn-rift deep crustal rocks up to the seafloor. Assuming an important role played by magmatism in the evolution of narrow rifts helps to solve the controversy on the nature of the crust in the northern/central Red Sea (i.e., the crust outside the axial oceanic cells is either oceanic or it consists of melt-intruded extended continental crust). Gabbros show petrologic and geochemical signatures similar to those of MORB-type gabbroic cumulates and are compatible with their having been emplaced either in a continental or in an oceanic context. We explored the different hypotheses proposed to explain the lack of magnetic anomalies in the presence of oceanic crust in the northern Red Sea. Our results, combined with a review of all the geophysical and geological data in the area, suggest a stretched and thinned continental crust with few isolated sites of basaltic injections, in line with a model whereby asthenospheric melt intrusions contribute to weaken the lower crust enabling some decoupling between upper and lower crust, protracting upper crust extension and delaying crustal breakup. Our findings show that continental rupture in the northern Red Sea is preceded by intrusion of basaltic melts with MORB-type elemental and isotopic signature, that cooled forming gabbros at progressively shallower crustal depths as rifting progressed toward continental separation.



The research was sponsored by the PRIN2012 Programme (Project 20125JKANY_002). The work was supported by the Saudi Geological Survey and the Italian Consiglio Nazionale Ricerche. Fruitful discussions during SGS workshop held in Jeddah on February 14–17, 2016 improved this work. We thank O. R. Berg for providing the gabbro sample from the QUSEIR B-1X drill hole. We are grateful to Y. Cai, A. Cipriani, C. Palmiotto, M. Seyler, G. Barabino and G. Traversa for carrying out part of the analytical work. We thank Dr. Z. A. Nawab, SGS President and Dr A. M. Al Attas, SGS Assistant President, and Dr N. Rasul for their support during this work. We particularly thank P. Betts, C. Ebinger and two anonymous reviewers for their helpful and constructive comments.


  1. Al-Ahmadi K, Al-Amri A, See L (2014) A spatial statistical analysis of the occurrence of earthquakes along the Red Sea floor spreading: clusters of seismicity. Arab J Geosci 7:2893–2904CrossRefGoogle Scholar
  2. Almalki KA, Betts PG, Ailleres L (2015) The Red Sea—50 years of geological and geophysical research. Earth Sci Rev 147:109–140Google Scholar
  3. Almalki KA, Betts PG, Ailleres L (2016) Incipient seafloor spreading segments: insights from the Red Sea. Geophys Res Lett 43:2709–2715CrossRefGoogle Scholar
  4. Altherr R, Henjes-Kunst F, Puchelt H, Baumann A (1988) Volcanic activity in the Red Sea axial trough: Evidence for a large mantle diapir? Tectonophysics 150:121–133CrossRefGoogle Scholar
  5. Andersen DJ, Lindsley D, Davidson PM (1993) QUILF: A Pascal program to assess equilibria among Fe–Mg–Mn–Ti-oxides, pyroxenes, olivine, and quartz. Comp Geosci 19:1333–1350CrossRefGoogle Scholar
  6. Aoki K, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18:326–337CrossRefGoogle Scholar
  7. Aoki K, Shiba I (1973) Pyroxene from lherzolite inclusions of Itinomegata, Japan. Lithos 6:41–51CrossRefGoogle Scholar
  8. Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85CrossRefGoogle Scholar
  9. ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B, Fisseha S, Asfaw L, Mahmoud S, Rayan A, Bendik R, Kogan L (2010) Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29:TC3011.
  10. Augustin N, Devey CW, van der Zwan FM, Feldens P, Tominaga M, Bantan R, Kwasnitschka T (2014) The transition from rifting to spreading in the Red Sea. Earth Planet Sci Lett 395:217–230CrossRefGoogle Scholar
  11. Barnes SJ (1986) The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure. Geochim Cosmochim Acta 50:1889–1909CrossRefGoogle Scholar
  12. Bastow ID, Keir D (2011) The protracted development of the continent-ocean transition in Afar. Nature Geosci 4:248–250CrossRefGoogle Scholar
  13. Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14:848–851CrossRefGoogle Scholar
  14. Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element geochemistry of Corsican ophiolites. Contrib Mineral Petrol 64:11–31CrossRefGoogle Scholar
  15. Bellahsen N, Faccenna C, Funiciello F, Daniel JM, Jolivet L (2003) Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth Planet Sci Lett 216:365–381CrossRefGoogle Scholar
  16. Bender JF, Hodges FN, Bence AE (1978) Petrogenesis of basalts from the project Famous area: Experimental study from 0 to 15 kbars. Earth Planet Sci Lett 41:277–302CrossRefGoogle Scholar
  17. Bernstein S (2006) In situ fractional crystallization of a mafic pluton: Microanalytical study of a Palaeogene gabbronorite plug in East Greenland. Lithos 92:222–237CrossRefGoogle Scholar
  18. Beutel E, van Wijk J, Ebinger C, Keir D, Agostini A (2010) Formation and stability of magmatic segments in the Main Ethiopian and Afar rifts. Earth Planet Sci Lett 293:225–235CrossRefGoogle Scholar
  19. Birt CS, Maguire PKH, Khan MA, Thybo H, Keller GR, Patel J (1997) The influence of pre-existing structures on the evolution of the southern Kenya Rift Valley – evidence from seismic and gravity studies. Tectonophysics 278:211–242CrossRefGoogle Scholar
  20. Bleil U, Hall JH, Johnson HP, Levi S, Schonharting G (1982) The natural magnetization of a 3-kilometer section of Icelandic crust. J Geophys Res 87:6569–6589CrossRefGoogle Scholar
  21. Bohannon RG, Eittreim SL (1991) Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica. Tectonophysics 198:129–154CrossRefGoogle Scholar
  22. Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from continental to an oceanic rift. Nature 316:33–37CrossRefGoogle Scholar
  23. Bonatti E, Clocchiatti R, Colantoni P, Gelmini R, Marinelli G, Ottonello G, Santacroce R, Taviani M, Abdel-Meguid AA, Assaf HS, El Tahir MA (1983) Zabargad (St. John) Island: An uplifted fragment of sub-Red Sea lithosphere. J Geol Soc London 14D:667–690Google Scholar
  24. Bonatti E, Colantoni P, Della Vedova B, Taviani M (1984) Geology of the Red Sea transitional region (22°-25°N). Ocean Acta 7:385–398Google Scholar
  25. Bonatti E, Hamlyn P, Ottonello G (1981) Upper mantle beneath a young oceanic rift - peridotites from the island of Zabargad (Red-Sea). Geology 9:474–479CrossRefGoogle Scholar
  26. Bonatti E, Ligi M, Carrara G, Gasperini L, Turko N, Perfiliev A, Peyve A, Sciuto PF (1996) Diffuse impact of the Mid Atlantic Ridge with the Romanche transform: An Ultracold Ridge/Transform Intersection. J Geophys Res 101:8043–8054CrossRefGoogle Scholar
  27. Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (Red Sea). J Geophys Res 91:599–631CrossRefGoogle Scholar
  28. Bonatti E, Seyler M (1987) Crustal underplating and evolution in the Red Sea rift. J Geophys Res 92:12083–12821CrossRefGoogle Scholar
  29. Borghini G, Rampone E (2007) Postcumulus processes in oceanic-type olivine-rich cumulates: The role of trapped melt crystallization versus melt/rock interaction. Contrib Mineral Petrol 154:619–633CrossRefGoogle Scholar
  30. Bosworth W (1993) Nature of the Red Sea crust. A controversy revisited: Comment and reply. Geology 21:574–575CrossRefGoogle Scholar
  31. Bosworth W (2015) Geological evolution of the Red Sea: Historical background, review, and syntesis. In: Rasul NMA, Stewart ICF (eds) The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin Heidelberg, pp 45–78Google Scholar
  32. Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J African Earth Sci 43:334–378CrossRefGoogle Scholar
  33. Bosworth W, Stockli D (2016) Early magmatism in the greater Red Sea rift: Timing and significance. Canadian J Earth Sci 53(11):1158–1176. Scholar
  34. Bosworth W, Taviani M, Rasul N (2018) Neotectonics of the Red Sea, Gulf of Suez and Gulf of Aqaba. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Berlin Heidelberg, this issueGoogle Scholar
  35. Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt – implications for the Skaergaard intrusion and Columbia River flood basalts. J Petrol 29:1687–1727CrossRefGoogle Scholar
  36. Brey GP, Koehler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrology 31:1353–1378CrossRefGoogle Scholar
  37. Brueckner HK, Elhaddad MA, Hamelin B, Hemming S, Kröner A, Reisberg L, Seyler M (1995) A Pan-African origin and uplift for gneisses and peridotites of Zabargad Island, Red Sea: A Nd, Sr, Pb and Os isotope study. J Geophys Res 100:22283–22297CrossRefGoogle Scholar
  38. Casey JF, Banerji D, Zarian P (2007) Geochemical composition of gabbroic rocks from ODP Hole 179–1105A, southwest Indian Ridge. In: Casey JF, Miller DJ (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 179. Ocean Drilling Program, College Station, TX, pp 1-125Google Scholar
  39. Chang SJ, Van der Lee S (2011) Mantle plumes and associated flow beneath Arabia and East Africa. Earth Planetary Sci Lett 302:448–454CrossRefGoogle Scholar
  40. Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U–Pb systematics in zircons. J Petrology 46:3–32CrossRefGoogle Scholar
  41. Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328CrossRefGoogle Scholar
  42. Cochran JR (1983) A model for the development of the Red Sea. Am Assoc Petrol Geol Bull 67:41–69Google Scholar
  43. Cochran JR (2005) Northern Red Sea: Nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6:Q03006CrossRefGoogle Scholar
  44. Cochran JR, Karner GD (2007) Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: The transition from rifting to drifting. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modeling continental lithosphere extension and breakup. Geol Soc London, Spec Publ, vol. 282, pp 265–289Google Scholar
  45. Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53CrossRefGoogle Scholar
  46. Coleman RG, Fleck RJ, Hedge CE, Ghent ED (1977) The volcanic rocks of southwest Saudi Arabia and the opening of the Red Sea. In: Red Sea Research 1970–1975. Saudi Arabian Directorate General of Mineral Resources Bull 22:Dl-D30Google Scholar
  47. Coleman RG, Hadley DG, Fleck RG, Hedge CT, Donato MM (1979) The Miocene Tihama Asir ophiolite and its bearing on the opening of the Red Sea. In: Al-Shanti AM (ed) Evolution and Mineralization of the Arabian Shield. Pergamon Press Ltd, Oxford, pp 173–186CrossRefGoogle Scholar
  48. Coleman RG, McGuire AV (1988) Magma systems related to the Red Sea opening. Tectonophysics 150:77–100CrossRefGoogle Scholar
  49. Cornen G, Girardeau J, Monnier C (1999) Basalts, underplated gabbros and pyroxenites record the rifting process of the West Iberian margin. Mineral Petrol 67:111–142CrossRefGoogle Scholar
  50. Crane K, Bonatti E (1987) The role of fracture zones during early Red Sea rifting: Structural analysis using Space Shuttle radar and LANDSAT imagery. J Geol Soc London 144:407–420CrossRefGoogle Scholar
  51. Dalrymple GB, Alexander EC, Lanphere MA, Kraker GP (1981) Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor. USGS Professional Papers 1176, U.S. Geological Survey, Reston, VA, USA, p 29Google Scholar
  52. Daniels KA, Bastow ID, Keir D, Sparks RSJ, Menard T (2014) Thermal models of dyke intrusion during the development of continent-ocean transition. Earth Planet Sci Lett 285:145–153CrossRefGoogle Scholar
  53. DeMets C, Merkouriev S (2016) High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden. Geophys J Int 207:317–332CrossRefGoogle Scholar
  54. Deniel C, Vidal P, Coulon C, Vellutini P-J, Piguet P (1994) Temporal evolution of mantle sources during continental rifting: The volcanism of Djibouti (Afar). J Geophys Res 99:2853–2869CrossRefGoogle Scholar
  55. Drüppel K, von Seckendorff V, Okrusch M (2001) Subsolidus reaction textures in anorthosites of the Kunene Intrusive Complex, NW Namibia. European J Mineralogy 13:289–309CrossRefGoogle Scholar
  56. Dyment J, Tapponnier P, Afifi AM, Zinger MA, Franken D, Muzaiyen EA (2013) New seafloor spreading model of the Red Sea: Magnetic anomalies and plate kinematics. AGU Fall Meeting 2013, San Francisco, T21A-2512Google Scholar
  57. Ebinger CE, Scholz CA (2012) Continental rift basins: The East African perspective. In: Busby C, Azor A (eds) Tectonics of Sedimentary Basins: Recent Advances. Wiley-Blackwell, Oxford, pp 185–208Google Scholar
  58. Ehrhardt A, Hubscher C (2015) The northern Red Sea in transition from rifting to drifting—lessons learned from ocean deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin, pp 121–135Google Scholar
  59. Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer. Am Mineral 83:952–969CrossRefGoogle Scholar
  60. Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Pet 152:611–638CrossRefGoogle Scholar
  61. Féménias O, Mercier JCC, Nkono C, Diot H, Berza T, Tatu M, Demaiffe D (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: evidence from the Motru dike swarm (Southern Carpathians, Romania). Am Mineral 91:73–81CrossRefGoogle Scholar
  62. Frost BR, Lindsley DH (1992) Equilibria among Fe–Ti oxides, pyroxenes, olivine, and quartz: part II application. Am Mineral 77:1004–1020Google Scholar
  63. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518CrossRefGoogle Scholar
  64. Gallacher R, Keir D, Harmon N (2018) The nature of upper mantle upwelling during initiation of seafloor spreading in the southern Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Heidelberg (this issue)Google Scholar
  65. Gasperini L, Bernoulli D, Bonatti E, Borsetti AM, Ligi M, Negri A, Sartori R, von Salis K (2001) Lower cretaceous to Eocene sedimentary transverse ridge at the Romanche fracture zone and the opening of the equatorial Atlantic. Mar Geol 176:101–119CrossRefGoogle Scholar
  66. Gaulier J-M, Le Pichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Hafez S (1988) Seismic study of the crustal thickness, northern Red Sea and Gulf of Suez. Tectonophysics 153:55–88CrossRefGoogle Scholar
  67. Ghebreab W (1998) Tectonics of the Red Sea region reassessed. Earth Sci Rev 45:1–44CrossRefGoogle Scholar
  68. Girdler RW (1985) Problems concerning the evolution of oceanic lithosphere in the northern Red Sea. Tectonophysics 116:109–122CrossRefGoogle Scholar
  69. Girdler RW (1991) The Afro-Arabian rift system; an overview. Tectonophysics 197:139–153CrossRefGoogle Scholar
  70. Girdler RW, Styles P (1974) Two stage seafloor spreading. Nature 247:7–11CrossRefGoogle Scholar
  71. Ghent ED, Coleman RG, Hadley DG (1980) Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea. Am J Sci 280A:499–527Google Scholar
  72. Gordon G, Hansen B, Scott J, Hirst C, Graham R, Grow T, Spedding A, Fairhead S, Fullarton L, Griffin D (2010) The hydrocarbon prospectivity of the Egyptian North Red Sea basin. In: Vining BA, Pickering SC (eds) Petroleum geology: from mature basins to new frontiers. Proceedings of the 7th Petroleum geology conference, Geol Soc London, pp 783–789Google Scholar
  73. Greene DC (1984) Structural geology of the Quseir area, Red Sea coast, Egypt. Dept Geology and Geography, University of Massachusetts, Amherst, MA (contribution no. 52, pp 158)Google Scholar
  74. Greiling RO, El Ramly MF, El Arhal H, Stern RJ (1988) Tectonic evolution of the northwestern Red Sea margin as related to basement structure. Tectonophysics 153:179–191CrossRefGoogle Scholar
  75. Guennoc P, Pautot G, Coutelle (1988) Surficial structures of the northern Red Sea axial valley from 23°N to 28°N: Time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23CrossRefGoogle Scholar
  76. Haase KM, Muhe R, Stoffers P (2000) Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chem Geol 166:225–239CrossRefGoogle Scholar
  77. Hammond JOS, Kendall J-M, Stuart GW, Keir D, Ebinger C, Ayele A, Belachew M (2011) The nature of the crust beneath the Afar triple junction: evidence from receiver functions. Geochem Geophys Geosyst 12:Q12004CrossRefGoogle Scholar
  78. Hammond JOS, Kendall J-M, Stuart GW, Ebinger CJ, Bastow ID, Keir D, Ayele A, Belachew M, Goitom B, Ogubazghi G, Wright TJ (2013) Mantle upwelling and initiation of rift segmentation beneath the Afar Depression. Geology 41:635–639CrossRefGoogle Scholar
  79. Hebert R, Constantin M, Robinson PT (1991) Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks. In: Von Herzen RP, Robinson PT et al (eds) Proceedings of ocean drilling program, Scientific Results 118. Ocean Drilling Program, College Station, TX, pp 3–20Google Scholar
  80. Helz RT (1973) Phase relations of basalts in their melting range at P (sub H2O) = 5 kb as a function of oxygen fugacity; part I, mafic phases. J Pet 14:249–302CrossRefGoogle Scholar
  81. Hoang CT, Taviani M (1991) Stratigraphic and tectonic implications of uranium-series dated coral reefs from uplifted Red Sea islands. Quat Res 35:264–273CrossRefGoogle Scholar
  82. Hosny A, Nyblade A (2014) Crustal structure in southeastern Egypt: Symmetric thinning of the northern Red Sea rifted margins. Geology 42:219–222CrossRefGoogle Scholar
  83. Hosny A, Nyblade A (2016) The crustal structure of Egypt and the northern Red Sea region. Tectonophysics 687:257–267CrossRefGoogle Scholar
  84. Hutchison I (1985) The effects of sedimentation and compaction on oceanic heat flow. Geophys J Int 82:439–459CrossRefGoogle Scholar
  85. Jaques AL, Chappell BW (1980) Petrology and trace element geochemistry of the Papuan ultramafic belt. Contrib Mineral Petrol 75:55–70CrossRefGoogle Scholar
  86. Kempton PD, Downes H, Embey-Istzin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the western Pannonian basin: Insights into the lower crust of a collapsed orogen. J Petrol 38:941–970CrossRefGoogle Scholar
  87. Kempton PD, Harmon RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim Cosmochim Acta 56:971–986CrossRefGoogle Scholar
  88. Kendall JM, Lithgow-Bertelloni C (2016) Why is Africa rifting? In: Wright TJ, Ayele A, Ferguson DJ, Kidane T, Vye-Brown C (eds) Magmatic rifting and active volcanism. Geol Soc London, Spec Publ 420, pp 11–30Google Scholar
  89. LaBrecque JL, Zitellini N (1985) Continuous sea-floor spreading in Red Sea: an alternative interpretation of magnetic anomaly patterns. Bull Am Assoc Petrol Geol 69:513–524Google Scholar
  90. Langmuir CH, Hanson GN (1981) Calculating mineral-melt equilibria with stoichiometry, mass balance and single component distribution coefficients. In: Newton RC, Navrotsky A, Wood BJ (eds) Advances in physical geochemistry 1: thermodynamics of minerals and melts. Springer, Berlin, New York, pp 247–271Google Scholar
  91. Le Bas MJ (1962) The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am J Sci 260:267–288CrossRefGoogle Scholar
  92. Lee CTA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Ann Rev Earth Planet Sci 39:59–90CrossRefGoogle Scholar
  93. LePichon X, Gaulier J-M (1988) The rotation of Arabia and the Levant fault system. Tectonophysics 153:271–294CrossRefGoogle Scholar
  94. Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612CrossRefGoogle Scholar
  95. Levi S (1979) Paleomagnetism and some magnetic properties of basalts from the Bermuda Triangle. In: Initial reports of the Deep Sea Drilling Project, vol. 52. U.S. Government Printing Office, Washington, DC, pp 1363–1377Google Scholar
  96. Levi S, Riddihough R (1986) Why are marine magnetic anomalies suppressed over sedimented spreading centers. Geology 14:651–654CrossRefGoogle Scholar
  97. Li J, Sideris MG (1997) Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data. J Geodesy 71:209–216CrossRefGoogle Scholar
  98. Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: Initial pangs. Geochem Geophys Geosyst 13:Q08009CrossRefGoogle Scholar
  99. Ligi M, Bonatti E, Bosworth W, Cai Y, Cipriani A, Palmiotto C, Ronca S, Seyler M (2018) Birth of an ocean in the Red Sea: oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Res 54:150–160CrossRefGoogle Scholar
  100. Ligi M, Bonatti E, Caratori Tontini F, Cipriani A, Cocchi L, Schettino A, Bortoluzzi G, Ferrante V, Khalil SM, Mitchell NC, Rasul N (2011) Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology 39:1019–1022CrossRefGoogle Scholar
  101. Ligi M, Bonatti E, Rasul NMA (2015) Seafloor spreading initiation: geophysical and geochemical constraints from the Thetis and Nereus Deeps, Central Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin, pp 79–98Google Scholar
  102. Ligi M, Bortoluzzi G (1989) PLOTMAP: Geophysical and geological applications of good standard quality cartographic software. Comput Geosci 15:519–585CrossRefGoogle Scholar
  103. Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493Google Scholar
  104. Lindsley DH, Frost BR (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: part l theory. Am Mineral 77:987–1003Google Scholar
  105. Loucks RR (1990) Discrimination of ophiolitic from non-ophiolitic ultramafic-mafic allochthon sinorogenic belts by the Al/Ti ratio in clinopyroxenes. Geology 18:346–349CrossRefGoogle Scholar
  106. Loucks RR (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. Contrib Mineral Petrol 125:140–150CrossRefGoogle Scholar
  107. Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1 method and results. J Geophys Res 112:B03211Google Scholar
  108. Makris MJ, Rhim R (1991) Shear-controlled evolution of the Red Sea: Pull-apart model. Tectonophysics 198:441–466CrossRefGoogle Scholar
  109. Martinez F, Cochran JR (1989) Geothermal measurements in the northern Red Sea: Implications for lithospheric thermal structure and mode of extension during continental rifting. J Geophys Res 94:12239–12265CrossRefGoogle Scholar
  110. Mazzucchelli M, Cipriani A, Hemond C, Zanetti A, Bertotto GW, Cingolani CA (2016) Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences. Lithos 248–251:257–271CrossRefGoogle Scholar
  111. McBirney AR, Nicolas A (1997) The skaergaard layered series part ii: magmatic flow and dynamic layering. J Petrol 38:569–580CrossRefGoogle Scholar
  112. McCarter RL, Fodor RV, Trusdell F (2006) Perspectives on basaltic magma crystallization and differentiation: lava-lake blocks erupted at Mauna Loa Volcano summit, Hawaii. Lithos 90:187–213CrossRefGoogle Scholar
  113. McDonough WF, Sun S-S (1995) Composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  114. McGuire AV, Coleman RG (1986) The Jabal Tirf layered gabbro and associated rocks of the Tihama Asir complex, SW Saudi Arabia. J Geol 94:651–665CrossRefGoogle Scholar
  115. Meyer PS, Dick HJB, Thompson G (1989) Cumulate gabbros from the Southwest Indian Ridge, 54°S–7°16’E: Implications for magmatic processes at a slow spreading ridge. Contrib Mineral Petrol 103:44–63CrossRefGoogle Scholar
  116. Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122:701–713CrossRefGoogle Scholar
  117. Mitchell NC, Ligi M, Feldens P, Hubscher C (2017) Deformation of a young salt giant: Regional topography of the Red Sea Miocene evaporites. Basin Res 29:352–369CrossRefGoogle Scholar
  118. Mitchell NC, Ligi M, Rohling EJ (2015) Red Sea isolation history by Plio-Pleistocene seismic reflection sequences. Earth Planet Sci Lett 430:387–397CrossRefGoogle Scholar
  119. Mitchell NC, Park Y (2014) Nature of crust in the central Red Sea. Tectonophysics 628:123–139CrossRefGoogle Scholar
  120. Mitra S, Princivalle F, Samanta AK, Moon H-S (1999) Geothermometry and mineralogy of two-pyroxene granulites: Evaluation from Mossbauer and X-ray single crystal cation partitioning of Ca-Poor and Ca-Rich pyroxenes. J Geol Soc India 53:537–548Google Scholar
  121. Montanini A, Tribuzio R, Vernia L (2008) Petrogenesis of basalts and gabbros from an ancient continent–ocean transition (External Liguride ophiolites, northern Italy). Lithos 101:453–479CrossRefGoogle Scholar
  122. Mooney WD, Gettings ME, Blank HR, Healy JH (1985) Saudi Arabian seismic refraction profile: A traveltime interpretation of crustal and upper mantle structure. Tectonophysics 111:173–246CrossRefGoogle Scholar
  123. Müntener O, Manatschal G, Desmurs L, Pettke T (2010) Plagioclase peridotites in ocean–continent transitions: Refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. J Petrol 51:255–294CrossRefGoogle Scholar
  124. Müntener O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd-isotope evidence and implications for crust-mantle relationships. Earth Planet Sci Lett 221:293–308CrossRefGoogle Scholar
  125. Nicolas A, Boudier F, Montigny R (1987) Structure of Zabargad Island and early rifting of the Red Sea. J Geophys Res 92:461–474CrossRefGoogle Scholar
  126. Nielsen RL, Dungan MA (1983) Low pressure mineral-melt equilibria in natural anhydrous mafic systems. Contrib Mineral Petrol 84:310–326CrossRefGoogle Scholar
  127. Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks, part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:314–327CrossRefGoogle Scholar
  128. Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks: Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74CrossRefGoogle Scholar
  129. Niu Y, O’Hara MJ (2003) Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res 108:ECV5-1–ECV5-19Google Scholar
  130. Otten MP (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib Mineral Petrol 86:189–199CrossRefGoogle Scholar
  131. Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astr Soc 31:447–455CrossRefGoogle Scholar
  132. Parsons T, McCarthy J (1996) Crustal and upper mantle velocity structure of the Salton Trough, southeast California. Tectonics 15:456–471CrossRefGoogle Scholar
  133. Petrini R, Joron JL, Ottonello G, Bonatti E, Seyler M (1988) Basaltic dykes from Zabargad Island, Red Sea: petrology and geochemistry. Tectonophysics 150:229–248CrossRefGoogle Scholar
  134. Phelps D, Avé Lallemant HG (1980) The Sparta ophiolite complex, northeast Oregon: a plutonic equivalent to low K2O island-arc volcanism. Am J Sci 280A:345–358Google Scholar
  135. Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, de Franco R (2014) Seismic structure of the Central Tyrrhenian basin: geophysical constraints on the nature of the main crustal domains. J Geophys Res 119:52–70CrossRefGoogle Scholar
  136. Prada M, Sallares V, Ranero CR, Vendrell MG, Grevemeyer I, Zitellini N, de Franco R (2015) The complex 3-D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin. Geophys J Int 203:63–78CrossRefGoogle Scholar
  137. Reilinger R, McClusky S, ArRajehi A (2015) Geodetic constraints on the geodynamic evolution of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer Earth System Sciences, Berlin, pp 121–135Google Scholar
  138. Rychert CA, Hammond JOS, Harmon N, Kendall JM, Keir D, Ebinger C, Bastow ID, Ayele A, Belachew M, Stuart G (2012) Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nature Geosci 5:406–409CrossRefGoogle Scholar
  139. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  140. Rona PA (1978) Magnetic signatures of hydrothermal alteration and volcanogenic mineral deposits in oceanic crust. J Volcanology Geothermal Res 3:219–225CrossRefGoogle Scholar
  141. Ross K, Elthon D (1997). Cumulus and postcumulus crystallization in the oceanic crust: Major and trace element geochemistry of Leg 153 gabbroic rocks. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ocean drilling program, scientific results, vol. 153. Ocean Drilling Program, College Station, TX, pp 333–350Google Scholar
  142. Sallarès V, Martínez-Loriente S, Prada M, Gràcia E, Ranero CR, Gutscher MA, Bartolome R, Gailler A, Dañobeitia JJ, Zitellini N (2013) Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia). Earth Planet Sci Lett 365:120–131CrossRefGoogle Scholar
  143. Sandwell DT, Muller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67CrossRefGoogle Scholar
  144. Schilling JG, Kingsley RH, Hanan BB, McCully BL (1992) Nd–Sr–Pb isotopic variations along the Gulf of Aden; evidence for Afar mantle plume–continental lithosphere interaction. J Geophys Res 97:10927–10966CrossRefGoogle Scholar
  145. Seifert KE, Chang C-W, Brunotte DA (1997) Evidence from Ocean Drilling Program Leg 149 mafic igneous rocks for ocean crust in the Iberia Abyssal Plain ocean–continent transition. J Geophys Res 102:7915–7928CrossRefGoogle Scholar
  146. Seifert KE, Gibson I, Weis D, Brunotte D (1996) Geochemistry of metamorphosed cumulate gabbros from Hole 900A, Iberia Abyssal Plain. Proc Ocean Drill Program Sci Results 149:471–485Google Scholar
  147. Seyler M, Bonatti E (1988) Petrology of the gneiss/amphibolite metamorphic unit from Zabargad Island, Red Sea. Tectonophysics 150:177–207CrossRefGoogle Scholar
  148. Shukri NM (1944) On the geology of the Brothers Islets–northern Red Sea. Bull Fac Sci Cairo Univ 25:175–196Google Scholar
  149. Stakes D, Mével C, Cannat M, Chaput T (1991) Metamorphic stratigraphy of Hole 735B. In: Von Herzen RP, Robinson PT (eds) Proceedings of the ocean drilling program, scientific results, vol. 118. Ocean Drilling Program, College Station, TX, pp 153–180Google Scholar
  150. Stern RJ, Gottfried D, Hedge CE (1984) Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology 12:168–172CrossRefGoogle Scholar
  151. Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127CrossRefGoogle Scholar
  152. Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67CrossRefGoogle Scholar
  153. Stern RJ, Johnson P (2018) Constraining the opening of the Red Sea: evidence from the Neoproterozoic margins and Cenozoic magmatism for a Volcanic Rifted Margin. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Berlin (this issue)Google Scholar
  154. Stockly D, Bosworth W (2018) In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer Earth System Sciences, Heidelberg (this issue)Google Scholar
  155. Sultan M, Becker R, Arvidson RE, Sore P, Stern RJ, El-Alfy Z, Guinnes EA (1992) Nature of the Red Sea crust, a controversy revisited. Geology 20:593–596CrossRefGoogle Scholar
  156. Tang Z, Julià J, Zahran H, Mai PM (2016) The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics 680:8–27CrossRefGoogle Scholar
  157. Tapponnier P, Dyment J, Zinger MA, Franken D, Afifi AM, Wyllie A, Ali HG, Hanbal I (2013) Revisiting seafloor-spreading in the Red Sea: basement nature, transforms and ocean-continent boundary. In: AGU Fall Meeting 2013, San Francisco, T12B-04Google Scholar
  158. Taviani M, Bonatti E, Colantoni P, Rossi PL (1986) Tectonically uplifted crustal blocks in the northern Red Sea: data from the Brothers Islets. Mem Soc Geol It 27:47–50Google Scholar
  159. Taviani M, Rabbi E (1984) Marine botryoidal aragonite in Pleistocene reef limestones of Red Sea offshore islands (Northern Brother and Rocky Island). Miner Petrogr Acta 28:49–58Google Scholar
  160. Thybo H, Nielsen CA (2009) Magma-compensated crustal thinning in continental rift zones. Nature 457:873–876CrossRefGoogle Scholar
  161. Tiezzi LJ, Scott RB (1980) Crystal fractionation in a cumulate gabbro, Mid-Atlantic Ridge, 26°N. J Geophys Res 85:5438–5454CrossRefGoogle Scholar
  162. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170CrossRefGoogle Scholar
  163. Tramontini C, Davis D (1969) A seismic refraction survey in the Red Sea. Geophys J R Astr Soc 17:225–241CrossRefGoogle Scholar
  164. Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within olivine-bearing gabbros from the northern Apennine ophiolites (Italy): Evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Mineral Petrol 134:123–133CrossRefGoogle Scholar
  165. Tziavos IN, Sideris MG, Forsberg R (1998) Combined satellite altimetry and shipborne gravimetry data processing. Mar Geodesy 21:299–317CrossRefGoogle Scholar
  166. Urquhart A, Bauer S (2015) Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from −75 to 300 °C. Int J Rock Mech Min Sci 78:350–352CrossRefGoogle Scholar
  167. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—An experimental study at 1.0 GPa. J Petrol 45:2369–2388CrossRefGoogle Scholar
  168. Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa. The effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48:159–184CrossRefGoogle Scholar
  169. Voggenreiter W, Hötzl H (1989) Kinematic evolution of the southwestern Arabian continental margin; implications for the origin of the Red Sea. J Afr Earth Sci 8:541–564CrossRefGoogle Scholar
  170. Voggenreiter W, Hötzl H, Mechie J (1988) Low-angle detachment origin for the Red Sea Rift System? Tectonophysics 150:51–75CrossRefGoogle Scholar
  171. Volker F, McCulloch MT (1993) Submarine basalts from the Red Sea: New Pb, Sr, and Nd isotopic data. Geophys Res Lett 20:927–930CrossRefGoogle Scholar
  172. Walker D, Shibata T, Delong SE (1979) Abyssal tholeiites from the Oceanographer fracture zone. II, Phase equilibria and mixing. Contrib Mineral Petrol 70:111–125CrossRefGoogle Scholar
  173. Weaver JS, Langmuir CH (1990) Calculation of phase equilibrium in mineral-melt systems. Comput Geosci 16:1–19CrossRefGoogle Scholar
  174. White RS, McKenzie D, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97:19683–19715CrossRefGoogle Scholar
  175. Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Bull Geol Soc Am 117:846–864CrossRefGoogle Scholar
  176. Wright T, Sigmundsson F, Ayele A, Belachew M, Brandsdottir B, Calais E, Ebinger C, Einarsson P, Hamling I, Keir D, Lewi E, Pagli C, Pedersen R (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nature Geosci 5:242–249CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marco Ligi
    • 1
    Email author
  • Enrico Bonatti
    • 1
    • 2
  • William Bosworth
    • 3
  • Sara Ronca
    • 4
  1. 1.Istituto di Scienze Marine, CNRBolognaItaly
  2. 2.Lamont Doherty Earth Observatory, Columbia UniversityPalisadesUSA
  3. 3.Apache Egypt CompaniesNew Maadi, CairoEgypt
  4. 4.Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly

Personalised recommendations