Advertisement

Mammogram Diagnostics Using Robust Wavelet-Based Estimator of Hurst Exponent

  • Chen Feng
  • Yajun Mei
  • Brani Vidakovic
Chapter
Part of the ICSA Book Series in Statistics book series (ICSABSS)

Abstract

Breast cancer is one of the leading causes of death in women. Mammography is an effective method for early detection of breast cancer. Like other medical images, mammograms demonstrate a certain degree of self-similarity over a range of scales, which can be used in classifying individuals as cancerous or non-cancerous. In this paper, we study the robust estimation of Hurst exponent (self-similarity measure) in two-dimensional images based on non-decimated wavelet transforms (NDWT). The robustness is achieved by applying a general trimean estimator on non-decimated wavelet detail coefficients of the transformed data, and the general trimean estimator is derived as a weighted average of the distribution’s median and quantiles, combining the median’s emphasis on central values with the quantiles’ attention to the extremes. The properties of the proposed estimators are studied both theoretically and numerically. Compared with other standard wavelet-based methods (Veitch and Abry (VA) method, Soltani, Simard, and Boichu (SSB) method, median based estimators MEDL and MEDLA, and Theil-type (TT) weighted regression method), our methods reduce the variance of the estimators and increase the prediction precision in most cases. We apply proposed methods to digitized mammogram images, estimate Hurst exponent, and then use it as a discriminatory descriptor to classify mammograms to benign and malignant. Our methods yield the highest classification accuracy around 65%.

References

  1. Abry, P. (2003). Scaling and wavelets: An introductory walk. In Processes with long-range correlations (pp. 34–60). Berlin: Springer.CrossRefGoogle Scholar
  2. Abry, P., Gonçalvés, P., & Flandrin, P. (1995). Wavelets, spectrum analysis and 1/f processes. In: Wavelets and statistics (pp. 15–29). Springer: New York.zbMATHCrossRefGoogle Scholar
  3. Abry, P., Goncalves, P., & Véhel, J. L. (2013). Scaling, fractals and wavelets. New York: Wiley.zbMATHGoogle Scholar
  4. Abry, P., Flandrin, P., Taqqu, M. S., & Veitch, D. (2000). Wavelets for the analysis, estimation and synthesis of scaling data. Self-similar network traffic and performance evaluation (pp. 39–88). New York: Wiley.Google Scholar
  5. Abry, P., Flandrin, P., Taqqu, M. S., & Veitch, D. (2003). Self-similarity and long-range dependence through the wavelet lens. In Theory and applications of long-range dependence (pp. 527–556). Boston, MA: Birkhauser.zbMATHGoogle Scholar
  6. Andrews, D. F., & Hampel, F. R. (2015). Robust estimates of location: Survey and advances. Princeton: Princeton University Press.zbMATHGoogle Scholar
  7. Bala, B. K., & Audithan, S. (2014). Wavelet and curvelet analysis for the classification of microcalcifiaction using mammogram images. In Second International Conference on Current Trends in Engineering and Technology - ICCTET 2014 (pp. 517–521).  https://doi.org/10.1109/ICCTET.2014.6966351
  8. DasGupta, A. (2008). Edgeworth expansions and cumulants. In Asymptotic theory of statistics and probability (pp. 185–201). New York: Springer.zbMATHCrossRefGoogle Scholar
  9. El-Naqa, I., Yang, Y., Wernick, M. N., Galatsanos, N. P., & Nishikawa, R. M. (2002). A support vector machine approach for detection of microcalcifications. IEEE Transactions on Medical Imaging, 21(12), 1552–1563.CrossRefGoogle Scholar
  10. Engel, Jr J., Bragin, A., Staba, R., & Mody, I. (2009). High-frequency oscillations: What is normal and what is not? Epilepsia, 50(4), 598–604.CrossRefGoogle Scholar
  11. Feng, C., & Vidakovic, B. (2017), Estimation of the hurst exponent using trimean estimators on nondecimated wavelet coefficients. arXiv preprint arXiv:170908775.Google Scholar
  12. Franzke, C. L., Graves, T., Watkins, N. W., Gramacy, R. B., & Hughes, C. (2012). Robustness of estimators of long-range dependence and self-similarity under non-gaussianity. Philosophical Transactions of the Royal Society A, 370(1962), 1250–1267.CrossRefGoogle Scholar
  13. Gastwirth, J. L. (1966). On robust procedures. Journal of the American Statistical Association, 61(316), 929–948.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Gastwirth, J. L., & Cohen, M.L (1970) Small sample behavior of some robust linear estimators of location. Journal of the American Statistical Association, 65(330), 946–973zbMATHCrossRefGoogle Scholar
  15. Gastwirth, J. L, & Rubin, H. (1969). On robust linear estimators. The Annals of Mathematical Statistics, 40(1), 24–39.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210.CrossRefGoogle Scholar
  17. Hamilton, E. K., Jeon, S., Cobo, P. R., Lee, K. S., & Vidakovic, B. (2011). Diagnostic classification of digital mammograms by wavelet-based spectral tools: A comparative study. In 2011 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE (pp. 384–389).Google Scholar
  18. Heath, M., Bowyer, K., Kopans, D., Moore, R., & Kegelmeyer, W. P. (2000). The digital database for screening mammography. In Proceedings of the 5th International Workshop on Digital Mammography (pp. 212–218). Medical Physics Publishing.Google Scholar
  19. Jeon, S., Nicolis, O., & Vidakovic, B. (2014). Mammogram diagnostics via 2-d complex wavelet-based self-similarity measures. The São Paulo Journal of Mathematical Sciences, 8(2), 265–284.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Kang, M., & Vidakovic, B. (2017). Medl and medla: Methods for assessment of scaling by medians of log-squared nondecimated wavelet coefficients. ArXiv Preprint ArXiv:170304180.Google Scholar
  21. Katul, G., Vidakovic, B., & Albertson, J. (2001). Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations. Physics of Fluids, 13(1), 241–250.zbMATHCrossRefGoogle Scholar
  22. Kestener, P., Lina, J. M., Saint-Jean, P., & Arneodo, A. (2011). Wavelet-based multifractal formalism to assist in diagnosis in digitized mammograms. Image Analysis & Stereology, 20(3), 169–174.zbMATHCrossRefGoogle Scholar
  23. Kolmogorov, A. N. (1940). Wienersche spiralen und einige andere interessante kurven in hilbertscen raum, cr (doklady). Academy of Sciences URSS (NS), 26, 115–118.Google Scholar
  24. Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Nason, G. P., & Silverman, B. W. (1995). The stationary wavelet transform and some statistical applications. In Wavelets and statistics (pp. 281–299). New York: Springer.zbMATHCrossRefGoogle Scholar
  26. Netsch, T., & Peitgen, H. O. (1999). Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Transactions on Medical Imaging, 18(9), 774–786.CrossRefGoogle Scholar
  27. Nicolis, O., Ramírez-Cobo, P., & Vidakovic, B. (2011). 2d wavelet-based spectra with applications. Computational Statistics & Data Analysis, 55(1), 738–751.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Park, J., & Park, C. (2009). Robust estimation of the hurst parameter and selection of an onset scaling. Statistica Sinica, 19, 1531–1555.MathSciNetzbMATHGoogle Scholar
  29. Park, K., & Willinger, W. (2000). Self-similar network traffic and performance evaluation. Wiley Online Library. https://doi.org/10.1002/047120644X.Google Scholar
  30. Percival, D. B., & Walden, A. T. (2006). Wavelet methods for time series analysis (vol. 4). New York: Cambridge University Press.zbMATHGoogle Scholar
  31. Ramírez-Cobo, P., & Vidakovic, B. (2013). A 2d wavelet-based multiscale approach with applications to the analysis of digital mammograms. Computational Statistics & Data Analysis, 58, 71–81.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Reiss, P. T., & Ogden, R. T. (2010). Functional generalized linear models with images as predictors. Biometrics, 66(1), 61–69.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Reiss, P. T., Ogden, R. T., Mann, J. J., & Parsey, R. V. (2005). Functional logistic regression with pet imaging data: A voxel-level clinical diagnostic tool. Journal of Cerebral Blood Flow & Metabolism, 25(1_suppl), S635–S635.CrossRefGoogle Scholar
  34. Shen, H., Zhu. Z., & Lee, T. C. (2007). Robust estimation of the self-similarity parameter in network traffic using wavelet transform. Signal Processing, 87(9), 2111–2124.zbMATHCrossRefGoogle Scholar
  35. Sheng, H., Chen, Y., & Qiu, T. (2011). On the robustness of hurst estimators. IET Signal Processing, 5(2), 209–225.MathSciNetCrossRefGoogle Scholar
  36. Soltani, S., Simard, P., & Boichu, D. (2004). Estimation of the self-similarity parameter using the wavelet transform. Signal Processing, 84(1), 117–123.zbMATHCrossRefGoogle Scholar
  37. Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theils contributions to economics and econometrics (pp. 345–381). The Netherlands: Springer.CrossRefGoogle Scholar
  38. Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, MA: Addison-Wesley.zbMATHGoogle Scholar
  39. Vidakovic, B. (2009). Statistical modeling by wavelets (Vol. 503). New York: Wiley.zbMATHGoogle Scholar
  40. Wang, T. C., & Karayiannis, N. B. (1998). Detection of microcalcifications in digital mammograms using wavelets. IEEE Transactions on Medical Imaging, 17(4), 498–509.CrossRefGoogle Scholar
  41. Wood, A. T., & Chan, G. (1994). Simulation of stationary gaussian processes in [0, 1] d. Journal of Computational and Graphical Statistics, 3(4), 409–432.MathSciNetGoogle Scholar
  42. Woods, T., Preeprem, T., Lee, K., Chang, W., & Vidakovic, B. (2016). Characterizing exons and introns by regularity of nucleotide strings. Biology Direct, 11(1), 6.CrossRefGoogle Scholar
  43. Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics, 14(1), 45–52.Google Scholar
  44. Zhou, H., Li, L., & Zhu, H. (2013). Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association, 108(502), 540–552.MathSciNetzbMATHCrossRefGoogle Scholar
  45. Zipunnikov, V., Caffo, B., Yousem, D. M., Davatzikos, C., Schwartz, B. S., Crainiceanu. C. (2011). Functional principal component model for high-dimensional brain imaging. NeuroImage, 58(3), 772–784.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.H. Milton Stewart School of Industrial and Systems Engineering and Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations