Cross-Domain Recommendation for Mapping Sentiment Review Pattern

  • Yang Xu
  • Zhaohui Peng
  • Yupeng Hu
  • Xiaoguang HongEmail author
  • Wenjing Fu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11061)


Cross-domain algorithms which aim to transfer knowledge available in the source domains to the target domain are gradually becoming more attractive as an effective approach to help improving quality of recommendations and to alleviate the problems of cold-start and data sparsity in recommendation systems. However, existing works on cross-domain algorithm mostly consider ratings, tags and the text information like reviews, cannot use the sentiments implicated in the reviews efficiently. In this paper, we propose a Sentiment Review Pattern Mapping framework for cross-domain recommendation, called SRPM. The proposed SRPM framework can model the semantic orientation of the reviews of users, and transfer sentiment review pattern of users by using a multi-layer perceptron to capture the nonlinear mapping function across domains. We evaluate and compare our framework on a set of Amazon datasets. Extensive experiments on each cross-domain recommendation scenarios are conducted to prove the high accuracy of our proposed SRPM framework.


Cross-domain recommendation Sentiment review pattern Pattern mapping 



This work is supported by NSF of Shandong, China (Nos. ZR2017MF065, ZR2018MF014), the Science and Technology Development Plan Project of Shandong, China (No. 2016GGX101034).


  1. 1.
    Cremonesi, P., Tripodi, A., Turrin, R.: Cross-domain recommender systems. In: ICDM 2012, pp. 496–503 (2012)Google Scholar
  2. 2.
    Fang, Z., Gao, S., Li, B., Li, J.: Cross-domain recommendation via tag matrix transfer. In: ICDM 2015, pp. 1235–1240 (2015)Google Scholar
  3. 3.
    Chen, W., Hsu, W., Lee, M.L.: Making recommendations from multiple domains. In: KDD 2013, pp. 892–900 (2013)Google Scholar
  4. 4.
    Yang, D., He, J., Qin, H., Xiao, Y., Wang, W.: A graph-based recommendation across heterogeneous domains. In: CIKM 2015, pp. 463–472 (2015)Google Scholar
  5. 5.
    Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix generative model. In: ICML 2009, pp. 617–624 (2009)Google Scholar
  6. 6.
    Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W.: The multilayer perceptron as an approximation to a bayes optimal discriminant function. IEEE Trans. Neural Netw. 1(4), 296–298 (1990)CrossRefGoogle Scholar
  7. 7.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  8. 8.
    Ren, S., Gao, S., Liao, J., Guo, J.: Improving cross-domain recommendation through probabilistic cluster-level latent factor model. In: AAAI 2015, pp. 4200–4201 (2015)Google Scholar
  9. 9.
    Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg (2013). Scholar
  10. 10.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  11. 11.
    He, R., Mcauley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW 2016, pp. 507–517 (2016)Google Scholar
  12. 12.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  13. 13.
    Pan, W., Liu, N.N., Xiang, E.W., Yang, Q.: Transfer learning to predict missing ratings via heterogeneous user feedbacks. In: AAAI 2011, pp. 2318–2323 (2011)Google Scholar
  14. 14.
    Singh, A.P., Kumar, G., Gupta, R.: Relational learning via collective matrix factorization. In: KDD 2008, pp. 650–658 (2008)Google Scholar
  15. 15.
    Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and mapping approach. In: IJCAI 2017, pp. 2464–2470 (2017)Google Scholar
  16. 16.
    Xin, X., Liu, Z., Lin, C., Huang, H., Wei, X., Guo, P.: Cross-domain collaborative filtering with review text. In: IJCAI 2015, pp. 1827–1833 (2015)Google Scholar
  17. 17.
    Diao, Q., Qiu, M., Wu, C.Y., Smola, A.J., et al.: Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In: KDD 2014, pp. 193–202 (2014)Google Scholar
  18. 18.
    Zhang, Y., Lai, G., Zhang, M., et al.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: SIGIR 2014, pp. 83–92 (2014)Google Scholar
  19. 19.
    Li, F., Wang, S., Liu, S., Zhang, M.: SUIT: a supervised user-item based topic model for sentiment analysis. In: AAAI 2014, pp. 1636–1642 (2014)Google Scholar
  20. 20.
    Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: International Conference on Language Resources and Evaluation, vol. 2542, pp. 83–90 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yang Xu
    • 1
  • Zhaohui Peng
    • 1
  • Yupeng Hu
    • 1
  • Xiaoguang Hong
    • 1
    Email author
  • Wenjing Fu
    • 1
  1. 1.School of Computer Science and TechnologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations