Advertisement

Parametric Study During Abrasive Water Jet Turning of Hybrid Metal Matrix Composite

  • Ashish Kumar Srivastava
  • Akash Nag
  • Amit Rai Dixit
  • Sandeep Tiwari
  • Vishal Shankar Srivastava
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The growing demand of efficient materials in automobile and aircraft industries originates the development of metal matrix composites (MMCs) with excellent properties such as higher strength, hardness and stiffness, better corrosive and wear resistance and thermal properties. However, these materials are not produced at a larger scale because of its poor machining performance due to the presence of hard abrasive particle which leads to high tool wear and meager machining outputs. This paper deals with the abrasive waterjet turning of the newly developed hybrid MMC of A359/B4C/Al2O3 produced by electromagnetic stir casting method. The main aim of the study is to discuss the effect of process parameters of abrasive waterjet machining on outcomes such as surface roughness and metal removal rate. Response surface methodology and ANOVA analysis has been applied to discuss the significant level of process parameters and their mathematical relations. The results reveals that each output response considered in the study was significantly affected by the machining process parameters. The surface roughness is found in the range of 6.0545 µm to 8.3825 µm, and MRR varies from 434.72 mm3/min to 565.02 mm3/min.

Keywords

Abrasive waterjet turning Surface roughness Material removal rate 

References

  1. 1.
    Srivastava, A., Dixit, A.R., Tiwari, S.: Experimental investigation of wire EDM process parameters on aluminum metal matrix composite Al2024/SiC. Int. J. Adv. Res. Innov. 2, 511–515 (2014)Google Scholar
  2. 2.
    Hull, D., Clyne, T.W.: An Introduction to Composite Materials. Cambridge Univ. Press, Cambridge (1996)CrossRefGoogle Scholar
  3. 3.
    Rohatgi, P.K., Guo, R.Q., Huang, P., Ray, S.: Friction and abrasion resistance of cast aluminium alloy- fly ash composites. Metall. Mater. Trans. A 28, 245–250 (1997)CrossRefGoogle Scholar
  4. 4.
    Garg, H.K., Verma, K., Manna, A., Kumar, R.: Hybrid metal matrix composites and further improvement in their machinability- A review. Int. J. Latest Res. Sci. Technol. 1(1), 36–44 (2012)Google Scholar
  5. 5.
    Blickwedel, H., Guo, N.S., Haferkamp, H., Louis, H.: Prediction of abrasive jet cutting performance and quality. In: Proceedings of the 10th International Symposium on Jet Cutting Technology, pp. 163–179. Amsterdam, Netherland (1990)Google Scholar
  6. 6.
    Muller, F., Monaghan, J.: Non-conventional machining of particle reinforced metal matrix composite. Int. J. Mach. Tools Manuf. 40, 1351–1366 (2000)CrossRefGoogle Scholar
  7. 7.
    Sasimurugan, T., Palanikumar, K.: Analysis of the machining characteristics on surface roughness of a hybrid aluminium metal matrix composite (Al6061-SiC-Al2O3). J. Miner. Mater. Charact. Eng. 10(13), 1213–1224 (2011)Google Scholar
  8. 8.
    Cárach, J., Hloch, S., Hlaváček, P., Gombár, M., Klichová, D., Botko, F., Mital, D., Lehocká, D.: Hydro-abrasive disintegration of alloy Monel K-500-the influence of technological and abrasive factors on the surface quality. Procedia Eng. 149, 17–23 (2016)CrossRefGoogle Scholar
  9. 9.
    Hloch, S., Hlavacek, J., Vasilko, K., Karach, J., Samardzic, I., Kozak, D., Hlavaty, I., Scucka, J., Klichova, D., Klich, J.: Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53(4), 537–540 (2014)Google Scholar
  10. 10.
    Hlaváček, P., Cárach, J., Hloch, S., Vasilko, K., Klichová, D., Klich, J., Lehocká, D.: Sandstone turning by abrasive waterjet. Rock Mech. Rock Eng. 48, 2489–2493 (2015).  https://doi.org/10.1007/s00603-015-0719-9CrossRefGoogle Scholar
  11. 11.
    Kok, M.: A Study on the machinability of Al2O3 particle reinforced aluminium alloy composite. Pract. Metallogr. 46(11), 580–597 (2009)CrossRefGoogle Scholar
  12. 12.
    Hashish, M.: Turning with abrasive-waterjets- A first investigation. J. Eng. Ind. 109, 281–290 (1987)CrossRefGoogle Scholar
  13. 13.
    Sitek, L., Hlavacek, P.: Turning of materials with high-speed abrasive water jet. MM Sci. J. (2016).  https://doi.org/10.17973/MMSJ.2016_10_201692CrossRefGoogle Scholar
  14. 14.
    Carach, J., Hloch, S., Hlaváček, P., Ščučka, J., Martinec, P., Petrů, J., Zlámal, T., Zeleňák, M., Monka, P., Lehocká, D., Krolczyk, J.: Tangential turning of Incoloy alloy 925 using abrasive water jet technology. Int. J. Adv. Manuf. Technol. 82, 1747–1752 (2016).  https://doi.org/10.1007/s00170-015-7489-0CrossRefGoogle Scholar
  15. 15.
    Rajmohan, T., Palanikumar, K.: Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46, 1470–1481 (2013)CrossRefGoogle Scholar
  16. 16.
    Srivastava, A.K., Dixit, A.R., Tiwari, S.: A review on intensification of metal matrix composites and its non-conventional machining. Sci. Eng. Compos. Mater (2016).  https://doi.org/10.1515/secm-2015-0287CrossRefGoogle Scholar
  17. 17.
    Srivastava, A.K., Nag, A., Dixit, A.R., Tiwari, S., Scucka, J., Zelenak, M., Hloch, S., Hlavacek, P.: Surface integrity in tangential turning of hybrid MMC A359/B 4 C/Al 2 O 3 by abrasive waterjet. J. Manuf. Process. 28, 11–20 (2017)CrossRefGoogle Scholar
  18. 18.
    Lehocká, D., Klichová, D., Foldyna, J., Hloch, S., Hvizdoš, P., Fides, M., Botko, F.: Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614 N brass. Measurement (2017). http://dx.doi.org/10.1016/j.measurement.2017.07.005
  19. 19.
    Ravi Kumar, K., Sreebalaji, V.S., Pridhar, T.: Characterization and optimization of abrasive water jet machining parameters of Aluminium/Tungsten carbide composites. Measurement (2017).  https://doi.org/10.1016/j.measurement.2017.11.059CrossRefGoogle Scholar
  20. 20.
    Srivastavaa, M., Hloch, S., Tripathi, R., Kozak, D., Chattopadhyaya, S., Dixit, A.R., Foldyna, J., Hvizdos, P., Fides, M., Adamcik, P.: Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. J. Manuf. Process. 32, 455–468 (2018)CrossRefGoogle Scholar
  21. 21.
    Srivastava, A.K., Dixit, A.R., Tiwari, S.: Investigation of micro-structural and mechanical properties of metal matrix composite A359/B4C through electromagnetic stir casting. Indian J. Eng. Mater. Sci. 23, 171–180 (2016)Google Scholar
  22. 22.
    Nag, A., Ščučka, J., Hlavacek, P., Klichová, D., Srivastava, A.K., Hloch, S., Dixit, A.R., Foldyna, J., Zelenak, M.: Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet. Int. J. Adv. Manuf. Technol. 94(5–8), 2293–2300 (2017)Google Scholar
  23. 23.
    Nag, A., Srivastava, A.K., Dixit, A.R., Chattopadhyaya, S., Mandal, A., Klichová, D., Hlaváček, P., Zeleňák, M., Hloch, S.: Influence of abrasive water jet turning parameters on variation of diameter of hybrid metal matrix composite. In: Applications of Fluid Dynamics. Lecture Notes in Mechanical Engineering (2018).  https://doi.org/10.1007/978-981-10-5329-0_36Google Scholar
  24. 24.
    Mardi, K.B., Dixit, A.R., Srivastava, A.K., Mallick, A., Scucka, J., Hlaváček, P., Hloch, S., Zeleňák, M.: Effect of water pressure during abrasive waterjet machining of Mg-based nanocomposite. Applications of Fluid Dynamics. Lecture Notes in Mechanical Engineering (2018).  https://doi.org/10.1007/978-981-10-5329-0_46Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashish Kumar Srivastava
    • 1
    • 2
  • Akash Nag
    • 2
  • Amit Rai Dixit
    • 2
  • Sandeep Tiwari
    • 3
  • Vishal Shankar Srivastava
    • 1
  1. 1.GL Bajaj Institute of Technology and ManagementGreater Noida, GB NagarIndia
  2. 2.Indian Institute of Technology (ISM)DhanbadIndia
  3. 3.Krishna Engineering CollegeGhaziabadIndia

Personalised recommendations