Advertisement

Modeling and Validation of Spindle Shaft Followed by Goal Driven Optimization

  • Kahane Roshan
  • Somnath Chattopadhyaya
  • Shrikant Bhise
  • Dattatraya Parle
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The spindle bearing system is critical component in any machining center due to its complexity and it directly affects design or selection of components. Fail-safe design is traditional design philosophy of the machine centers which leads to over-sized machine tool design including spindle bearing system. Over-sized spindle design affects the performance characteristics of the machine center and should be optimized. Therefore, this work presents a methodology for design optimization of spindle shaft that is subjected to uniformly distributed load. The deflection distribution of shaft due to given loading condition is a way for controlling the stability of spindle and its failure. In this work analytical as well as numerical methodology is presented for modeling and validation of spindle shaft deflection. The analytical modeling of spindle uses conventional beam theory whereas numerical modeling uses finite element analysis (FEA) software ANSYS. Analytical model is validated by performing static structural analysis using BEAM188 element and used further to calculate optimum bearing spacing for minimum deflection. Finally, analytically calculated optimum bearing span is used as design variable with specific range. Thus, a goal driven optimization (GDO) is performed in ANSYS with mass reduction as an objective function and deflection as design constraint.

Keywords

Spindle shaft Finite element analysis Optimization 

References

  1. 1.
    Reddy, V.R., Sharan, A.M.: The finite element modelled design of lathe spindles. Static Dyn. Anal. 109, 407–415 (1987)Google Scholar
  2. 2.
    Vadgeri, S.S., Patil, S.R., Chavan, S.T.: Static and fatigue analysis of lathe spindle for maximum cutting force. Mater. Today Proc. 5, 4438–4444 (2018).  https://doi.org/10.1016/j.matpr.2017.12.012CrossRefGoogle Scholar
  3. 3.
    Cao, H., Zhang, X., Chen, X.: The concept and progress of intelligent spindles: a review. Int. J. Mach. Tools Manuf. 112, 21–52 (2017).  https://doi.org/10.1016/j.ijmachtools.2016.10.005CrossRefGoogle Scholar
  4. 4.
    Grama, S.N., Mathur, A., Aralaguppi, R., Subramanian, T.: Optimization of high speed machine tool spindle to minimize thermal distortion. Procedia CIRP 58, 457–462 (2017).  https://doi.org/10.1016/j.procir.2017.03.253CrossRefGoogle Scholar
  5. 5.
    Liu, T., Gao, W., Zhang, D., Zhang, Y., Chang, W., Liang, C., Tian, Y.: Analytical modeling for thermal errors of motorized spindle unit. Int. J. Mach. Tools Manuf. 112, 53–70 (2017).  https://doi.org/10.1016/j.ijmachtools.2016.09.008CrossRefGoogle Scholar
  6. 6.
    Altintas, Y., Cao, Y.: Virtual design and optimization of machine tool spindles. CIRP Ann. Manuf. Technol. 54, 379–382 (2005).  https://doi.org/10.1016/S0007-8506(07)60127-9CrossRefGoogle Scholar
  7. 7.
    Gagnol, V., Bouzgarrou, B.C., Ray, P., Barra, C.: Stability-based spindle design, vol. 129, pp. 407–415 (2018).  https://doi.org/10.1115/1.2673400CrossRefGoogle Scholar
  8. 8.
    Cao, Y., Altintas, Y.: Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. Int. J. Mach. Tools Manuf. 47, 1342–1350 (2007).  https://doi.org/10.1016/j.ijmachtools.2006.08.006CrossRefGoogle Scholar
  9. 9.
    Brandon, J.A.: On the quasi-static design of machine tool spindles, 204 (1990)Google Scholar
  10. 10.
    T.I. Central Machine, CMTI.pdf, 1st Editio, Mcgraw Higher Ed. (2001)Google Scholar
  11. 11.
    Joshi, P.H.: Machine Tools Handbook - Design and Operation (2007).  https://doi.org/10.1036/0071494359CrossRefGoogle Scholar
  12. 12.
    Maeda, O., Cao, Y., Altintas, Y.: Expert spindle design system. Int. J. Mach. Tools Manuf 45, 537–548 (2005).  https://doi.org/10.1016/j.ijmachtools.2004.08.021CrossRefGoogle Scholar
  13. 13.
    Canonsburg, T.D.: ANSYS Mechanical User’s Guide, 15317, pp .724–746 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kahane Roshan
    • 1
  • Somnath Chattopadhyaya
    • 1
  • Shrikant Bhise
    • 2
  • Dattatraya Parle
    • 3
  1. 1.Indian Institute of Technology (ISM)DhanbadIndia
  2. 2.Bosch India Ltd.NashikIndia
  3. 3.Simulation CenterPuneIndia

Personalised recommendations