The Influence of EP/AW Addition in the MQL Method on the Parameters of Surface Geometrical Structure in the Process of Turning 316L Steel

  • Radoslaw W. Maruda
  • Szymon Wojciechowski
  • Grzegorz M. KrolczykEmail author
  • Danil Yu Pimenov
  • Stanislaw Legutko
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The methods of cooling with minimum lubrication, MQL, and with minimum cooling and lubrication, MQCL, are often applied in machining nowadays due to their ecological and environmental advantages. The MQL and MQCL methods are a good alternative to dry cutting, especially during machining of hard-to machine steels, where high temperature occurs in the cutting zone and process engineers want high quality of the machined surface. The paper compares four methods of cooling when turning austenitic steel, 316L: dry cutting, MQCL method, MQL method and MQL + EP/AW method. During the experiment, 2D height parameters were monitored, as well as Abbott Firestone curve with the spatial parameters and profiles of selected surfaces have been presented. Due to the large number of variables in the tests, the planning method of Parameter Space Investigation has been used. When applying the MQL cooling method with the addition of EP/AW, the smallest values of Ra and Rz parameters have been obtained in the whole range of the variable parameters of machining. The Abbott Firestone curve, together with the spatial parameters, has proved that a surface manufactured after the process of turning in the MQL + EP/AW conditions shows better exploitation properties.


Additives EP/AW Surface roughness and quality MQL MQCL Dry cutting 


  1. 1.
    Shokoohi, Y., Khosrojerdi, E., Rassolian Shiadhi, B.H.: Machining and ecological effects of a new developed cutting fluid in combination with different cooling techniques on turning operation. J. Clean. Prod. 94, 330–339 (2015)CrossRefGoogle Scholar
  2. 2.
    Barth, M.: Belastung und Beanspruchung durch biologische Arbeitsstoffe bei Kühlschmiermittel-Exponierten in der Metallbearbeitung. University of Duüsseldorf, Düsseldorf. (Dr. -Ing. Dissertation), Elsevier B.V. (2003)Google Scholar
  3. 3.
    Twardowski, P., Legutko, S., Krolczyk, G.M., Hloch, S.: Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling. Adv. Mech. Eng. 7(6), 1–9 (2015)CrossRefGoogle Scholar
  4. 4.
    Niemczewska-Wójcik, M.: Multi-sensor measurements of titanium alloy surface texture formed at subsequent operations of precision machining process. Measurement 96, 8–17 (2016)CrossRefGoogle Scholar
  5. 5.
    Kaplonek, W., Nadolny, K., Królczyk, G.M.: The use of focus-variation microscopy for the assessment of active surfaces of a new generation of coated abrasive tools. Meas. Sci. Rev. 16(2), 42–53 (2016)CrossRefGoogle Scholar
  6. 6.
    Aramcharoen, A.: Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy. Procedia CIRP 46, 83–86 (2016)CrossRefGoogle Scholar
  7. 7.
    Pušavec, F., Kopač, J.: Sustainability assessment: cryogenic machining of inconel 718. Stroj. Vestnik/J. Mech. Eng. 57(9), 637–647 (2011)CrossRefGoogle Scholar
  8. 8.
    Maruda, R.W., Legutko, S., Krolczyk, G.M., Lukianowicz, C., Stoic, A.: Effect of anti-wear additive on cutting tool and surface layer of workpiece state under MQCL conditions. Teh. Vjesn. - Tech. Gaz. 22(5), 1219–1223 (2015)Google Scholar
  9. 9.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arab. J. Sci. Eng. 41(2), 661–668 (2016)CrossRefGoogle Scholar
  10. 10.
    Dhar, N.R., Kamruzzaman, M., Ahmed, M.: Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J. Mater. Process. Technol. 172(2), 299–304 (2006)CrossRefGoogle Scholar
  11. 11.
    Maruda, R.W., Krolczyk, G.M., Michalski, M., Nieslony, P., Wojciechowski, S.: Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J. Mater. Eng. Perform. 26(1), 431–438 (2017)CrossRefGoogle Scholar
  12. 12.
    Tawakoli, T., Hadad, M.J., Sadeghi, M.H., Daneshi, A., Stöckert, S., Rasifard, A.: An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication-MQL grinding. Int. J. Mach. Tools Manuf. 49(12–13), 924–932 (2009)CrossRefGoogle Scholar
  13. 13.
    Maruda, R.W., Legutko, S., Krolczyk, G.M., Hloch, S., Michalski, M.: An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions. Int. J. Surf. Sci. Eng. 9(5), 452–465 (2015)CrossRefGoogle Scholar
  14. 14.
    Emami, M., Sadeghi, M.H., Sarhan, A.A.D., Hasani, F.: Investigating the Minimum quantity lubrication in grinding of Al 2O3 engineering ceramic. J. Clean. Prod. 66, 632–643 (2014)CrossRefGoogle Scholar
  15. 15.
    Krolczyk, G.M., Maruda, R.W., Nieslony, P., Wieczorowski, M.: Surface morphology analysis of Duplex Stainless Steel (DSS) in clean production using the power spectral density. Measurement 94, 464–470 (2016)CrossRefGoogle Scholar
  16. 16.
    Jaber, S.A., Ruggiero, A., Battaglia, S., Affatato, S.: On the roughness measurement on knee prostheses. Int. J. Artif. Organs 38(1), 39–44 (2015)CrossRefGoogle Scholar
  17. 17.
    Liao, Y.S., Lin, H.M.Ã.: Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. Int. J. Mach. Tools Manuf. 47, 1660–1666 (2007)CrossRefGoogle Scholar
  18. 18.
    Ruggiero, A., D’Amato, R., Gómez, E.: Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4 alloy under dry and lubricated conditions. Tribol. Int. 92, 154–161 (2015)CrossRefGoogle Scholar
  19. 19.
    Arunachalam, R.M., Mannan, M.A., Spowage, A.C.: Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. Int. J. Mach. Tools Manuf. 44(9), 879–887 (2004)CrossRefGoogle Scholar
  20. 20.
    Ruggiero, A., D’Amato, R., Gómez, E., Merola, M.: Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3ceramic, under dry and lubricated conditions. Tribol. Int. 96, 349–360 (2016)CrossRefGoogle Scholar
  21. 21.
    Rabiei, F., Rahimi, A.R., Hadad, M.J., Ashrafijou, M.: Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. J. Clean. Prod. 86, 447–460 (2015)CrossRefGoogle Scholar
  22. 22.
    Krajnik, P., Rashid, A., Pušavec, F., Remškar, M., Yui, A., Nikkam, N., Toprak, M.S.: Transitioning to sustainable production - part III: developments and possibilities for integration of nanotechnology into material processing technologies. J. Clean. Prod. 112, 1156–1164 (2015)CrossRefGoogle Scholar
  23. 23.
    Su, Y., Gong, L., Li, B., Liu, Z., Chen, D.: Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int. J. Adv. Manuf. Technol. 83(9–12), 2083–2089 (2016)CrossRefGoogle Scholar
  24. 24.
    Hdz-García, H.M., Pech-Canul, M.I., Muñoz-Arroyo, R., Mtz-Enriquez, A.I., Acevedo-Dávila, J.L., Castro-Román, M.J., Reyes-Valdés, F.A.: 304 stainless steel brazing incorporating tungsten nanoparticles. J. Mater. Process. Technol. 215, 1–5 (2015)CrossRefGoogle Scholar
  25. 25.
    Vamsi Krishna, P., Nageswara Rao, D.: Performance evaluation of solid lubricants in terms of machining parameters in turning. Int. J. Mach. Tools Manuf. 48(10), 1131–1137 (2008)CrossRefGoogle Scholar
  26. 26.
    Statnikov, R.B., Matusov, J.B.: Multicriteria Analysis in Engineering. Springer (2002)Google Scholar
  27. 27.
    Dhar, N.R., Islam, M.W., Islam, S., Mithu, M.A.H.: The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J. Mater. Process. Technol. 171(1), 93–99 (2006)CrossRefGoogle Scholar
  28. 28.
    Machado, A.R., Wallbank, J.: The effect of extremely low lubricant volumes in machining. Wear 210(1–2), 76–82 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Radoslaw W. Maruda
    • 1
  • Szymon Wojciechowski
    • 2
  • Grzegorz M. Krolczyk
    • 3
    Email author
  • Danil Yu Pimenov
    • 4
  • Stanislaw Legutko
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland
  2. 2.Faculty of Mechanical Engineering and ManagementPoznan University of TechnologyPoznanPoland
  3. 3.Faculty of Mechanical EngineeringOpole University of TechnologyOpolePoland
  4. 4.Department of Automated Mechanical EngineeringSouth Ural State UniversityChelyabinskRussia

Personalised recommendations