Investigation of the Effect of Johnson-Cook Constitutive Model Parameters on Results of the FEM Turning Simulation

  • Piotr Löschner
  • Krzysztof JaroszEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


FEM simulation are of growing importance in the research of phenomena related to the machining processes. To accurately model the machining process, an appropriate constitutive model needs to be employed. A Johnson-Cook (J-C) material model is frequently used for numerical simulations of various machining processes. J-C model parameters for a range of materials are available in open literature, with substantial differences between parameter values for the same material depending on the source. The aim of this work was to investigate the effect of changes in values of J-C model parameters on the results of an FEM oblique turning simulation. Impact of parameter values was evaluated on the basis of differences in chip shape, stress distribution and cutting force values obtained for several different parameter sets. The authors have noted significant differences in simulation results. Depending on used parameter values.


Johnson-Cook model Simulation Titanium alloy 


  1. 1.
    Kosmol, J., Mieszczak, W.: Zastosowanie metody elementów skończonych do modelowania procesu wiercenia. Modelowanie Inżynierskie 6, 169–176 (2009)Google Scholar
  2. 2.
    Guo, Y.B., Yen, D.W.: A FEM study on mechanisms of discontinuous chip formation in hard machining. J. Mater. Process. Technol. 155, 1350–1356 (2004)CrossRefGoogle Scholar
  3. 3.
    Özel T., Zeren E.: Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool. In: Proceedings of the 8th CIRP International Workshop on Modeling of Machining Operations. Verl. Wiss. Scripten, Zwickau (2005)Google Scholar
  4. 4.
    Karpat, Y.: Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining. J. Mater. Process. Technol. 211(4), 737–749 (2011)CrossRefGoogle Scholar
  5. 5.
    Maranhão, C., Davim, J.P.: Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation. Simul. Model. Pract. Theory 18(2), 139–156 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Outeiro, J.C., Mabrouki, T.: On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP 31, 112–117 (2015)CrossRefGoogle Scholar
  7. 7.
    Löschner, P., Niesłony, P., Jarosz, K.: Wpływ przemieszczenia niszczącego na wyniki symulacji numerycznej MES. Zeszyty Naukowe Politechniki Rzeszowskiej – Mechanika 89(4), 487–496 (2017)Google Scholar
  8. 8.
    Zhang, Y., Marek, T., Nelias, D., Gong, Y.: FE-model for titanium alloy (Ti-6Al-4V) cutting based on the identification of limiting shear stress at tool-chip interface. Int. J. Mater. Form. 4(1), 11–23 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, G., Ren, C., Yang, X., Ji, X.: Guo, T: Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int. J. Adv. Manuf. Technol. 56(9), 1027–1038 (2011)CrossRefGoogle Scholar
  10. 10.
    Wu, H.B., Zhang, S.J.: 3D FEM simulation of milling process for titanium alloy Ti6Al4V. Int. J. Adv. Manuf. Technol. 71(5–8), 1319–1326 (2014)CrossRefGoogle Scholar
  11. 11.
    Sun, S., Brandt, M., Dargusch, M.S.: Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf 49(7), 561–568 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Opole University of TechnologyOpolePoland

Personalised recommendations