Advertisement

Ionosphere Space Weather and Radio Propagation

  • Ljiljana R. Cander
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The effects of ionospheric weather on RF and GNSS systems are summarized in terms of the resulting consequences for radio communications, systems supporting space-based navigation and positioning, and surveillance, together with a description of the monitoring facilities and mapping techniques available for prediction, nowcasting, forecasting, post-event analysis, along with final operational tools, products, and services.

Keywords

RF systems GNSS Ionospheric monitoring Ionospheric mapping MOF LOF Time delay CODE maps 

References and Further Reading

  1. Barclay L (2002) Ionospheric effects and communication systems performance. Proc IES 2002:1–10Google Scholar
  2. Basler RP, Bentley PB, Price RT et al (1988) Ionospheric distortion of HF signals. Radio Sci 23:569–579CrossRefGoogle Scholar
  3. Ben A, Witvliet R (2017) Communication via Near Vertical Incidence Skywave propagation: an overview. Telecommun Syst.  https://doi.org/10.1007/s11235-017-0287-2CrossRefGoogle Scholar
  4. Beniguel Y, Hamel P (2011) A global ionosphere scintillation propagation model for equatorial regions. J Space Weather Space Clim 1:A04.  https://doi.org/10.1051/swsc/2011004CrossRefGoogle Scholar
  5. Bradley PA (1996) HF applications and prediction. In: Hall MPM, Barclay LW, Hewitt MT (eds) Propagation of radiowaves. IEE, London, pp 354–371Google Scholar
  6. Broms M, Lundborg B (1994) Results from Swedish oblique soundings campaigns. Ann Geofís XXXVII:145–152Google Scholar
  7. Cander LR (2008) Ionospheric research and space weather services. J Atmos Solar Terr Phys 70:1870–1878CrossRefGoogle Scholar
  8. CCIR Atlas of Ionospheric Characteristics (1967) Comité Consultatif International des Radiocommunications, Report 340-4. International Telecommunications Union, GenevaGoogle Scholar
  9. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83:191–198CrossRefGoogle Scholar
  10. Erdogan E, Michael Schmidt M, Florian Seitz F et al (2017) Near real-time estimation of ionosphere vertical total electron content from GNSS satellites using B-splines in a Kalman filter. Ann Geophys 35:263–277.  https://doi.org/10.5194/angeo-35-263-2017CrossRefGoogle Scholar
  11. Goodman JM (2005) Operational communication systems and relationships to the ionosphere and space weather. Adv Space Res 36:2241–2252CrossRefGoogle Scholar
  12. Hanbaba R (1999) Improved quality of service in ionospheric telecommunication systems planning and operation, COST Action 251 Final Report. Space Research Centre Printing Office, WarsawGoogle Scholar
  13. Hernández-Pajares M, Juan JM, Sanz J et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83(3–4):263–275.  https://doi.org/10.1007/s00190-008-0266-1CrossRefGoogle Scholar
  14. Hernández-Pajares M, Roma-Dollase D, Krankowski A et al (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy 91(12):1405–1414.  https://doi.org/10.1007/s00190-017-1032-zCrossRefGoogle Scholar
  15. Ippolito LJ Jr (1989) Propagation effects handbook for satellite systems design—A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design. NASA Reference Publication 1082(04), Washington DCGoogle Scholar
  16. ITU-R Rec.P.533-5 (1994) HF propagation prediction method. International Telecommunication Union, GenevaGoogle Scholar
  17. ITU-R Rec.P.534-4 (1999) Method for calculating sporadic-E field strength. International Telecommunications Union, GenevaGoogle Scholar
  18. ITU-R Rec. P.531-11 (2012) Ionospheric propagation data and prediction methods required for the design of satellite services and systems. International Telecommunications Union, GenevaGoogle Scholar
  19. Johnson EE, Desourdis RI, Earle GD et al (1997) Advanced high-frequency radio communications. Artech House, Boston and LondonGoogle Scholar
  20. Kintner PM Jr (2008) A beginner’s guide to space weather and GPS. Cornell University Lecture Notes 12Google Scholar
  21. Lundborg B, Broms M, Derblom H (1995) Oblique sounding of an auroral ionospheric HF channel. J Atmos Terr Phys 57:51–63CrossRefGoogle Scholar
  22. Marabashi K (1995) Perspectives of present and future space weather forecasts. J Atmos Terr Phys 57:1385–1396CrossRefGoogle Scholar
  23. Muslim B (2002) Penentuan MUF menggunakan model sederhana ionosfer tegional Indonesia. Kontribusi Fisika Indonesia 13(2):94–97Google Scholar
  24. Nava B, Coisson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Solar Terr Phys.  https://doi.org/10.1016/j.jastp.2008.01.015CrossRefGoogle Scholar
  25. Orus R, Cander LR, Hernandez-Pajares M (2007) Testing regional vTEC maps over Europe during the 17–21 January 2005 sudden space weather event. Radio Sci 42:RS3004.  https://doi.org/10.1029/2006rs003515CrossRefGoogle Scholar
  26. Perna L, Pezzopane M, Pietrella M et al (2017) An updating of the SIRM model. Adv Space Res 60:1249–1260.  https://doi.org/10.1016/j.asr.2017.06.029CrossRefGoogle Scholar
  27. Pezzopane M, Scotto C (2007) The automatic scaling of critical frequency foF2 and MUF(3000)F2: a comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Sci.  https://doi.org/10.1029/2006rs003581CrossRefGoogle Scholar
  28. Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27:35–40CrossRefGoogle Scholar
  29. Rawer K (1993) Wave propagation in the ionosphere. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  30. Reinisch BW, Galkin IA (2011) Global Ionospheric Radio Observatory (GIRO). Earth Plan Sci 63:377–381Google Scholar
  31. Ritchie SE, Honary F (2009) Storm sudden commencement and its effect on high-latitude HF communication links. Space Weather.  https://doi.org/10.1029/2008sw000461CrossRefGoogle Scholar
  32. Rush CM, Gibbs J (1973) Predicting the day-to-day variability of the mid-latitude ionosphere for application to HF propagation predictions. AFCRL Technical Rep. TR-73-0335, AlexsandriaGoogle Scholar
  33. Samardjiev T, Bradley PA, Cander LR et al (1993) Ionospheric mapping by computer contouring techniques. Electron Lett 29:1794–1795CrossRefGoogle Scholar
  34. Satellite Navigation & Space Weather: Understanding the Vulnerability & Building Resilience Report of a Policy Workshop Developed (2011) American Meteorological Society Policy ProgramGoogle Scholar
  35. Severe Space Weather Events: Understanding Societal and Economic Impacts: A Workshop Report (2008) National Research Council, The National Academies Press, Washington DC.  https://doi.org/10.17226/12507
  36. Verhulst TGW, Altadill D, Mielich J et al (2017) Vertical and oblique HF sounding with a network of synchronized ionosondes. Adv Space Res 60(8):1797–1806.  https://doi.org/10.1016/j.asr.2017.06.033CrossRefGoogle Scholar
  37. Zolesi B, LR Cander, De Franceschi G (1993) Simplified Ionospheric Regional Model (SIRM) for telecommunication applications. Radio Sci 28:603–612CrossRefGoogle Scholar
  38. Zolesi B, LR Cander, De Franceschi G (1996) On the potential applicability of SIRM (Simplified Ionospheric Regional Model) to different mid-latitude areas. Radio Sci 31:547–552CrossRefGoogle Scholar
  39. Zolesi B, Belehaki A, Tsagouri I et al (2004) Real-time updating of the simplified ionospheric regional model for operational applications. Radio Sci 39:RS2011. https://doi.org/10.1029/2003rs002936CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RAL Space, Science and Technology Facilities Council (STFC)Rutherford Appleton Laboratory (RAL)DidcotUK

Personalised recommendations