Advertisement

Ionospheric Irregularities and Waves

  • Ljiljana R. Cander
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Some of the fundamental scientific questions are raised, mainly focusing on the causes of mid-latitude ionospheric irregularities and waves, the upward coupling of energy in the M-I-A system, and the thermal structure. A definition is provided for irregular behaviour with appropriate examples of LSTIDs and MSTIDs in the European mid-latitude ionosphere.

Keywords

Irregularities Waves M-I-T AGW TADs TIDs 

References and Further Reading

  1. Afraimovich EL (2008) First GPS-TEC evidence of wave structure excited by solar terminator. Earth Plane Space 60:895–900CrossRefGoogle Scholar
  2. Andreev AB, Somsikov VM, Mukasheva SN et al (2018) Nonequilibrium effects in atmospheric perturbations caused by solar radiation flux. Int J Geomag Aeronom 58(1):106–112CrossRefGoogle Scholar
  3. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic, San DiegoGoogle Scholar
  4. Boska J, Sauli P, Altadill D et al (2003) Diurnal variation of the gravity wave activity at midlatitudes of ionospheric F region. Studia Geophys Geod 47:579–586CrossRefGoogle Scholar
  5. Chen G, Wu C, Huang X et al (2015) Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J Geophys Res 120:3009–3020.  https://doi.org/10.1002/2014ja020849CrossRefGoogle Scholar
  6. Crowley G, McCrea IW (1988) A synoptic study of TIDs observed in the UK during the first WAGS campaign, October 10–18, 1985. Radio Sci 23:905–917.  https://doi.org/10.1029/rs023i006p00905CrossRefGoogle Scholar
  7. Crowley G, Rodrigues FS (2012) Characteristics of traveling ionospheric disturbances observed by the TIDDBIT sounder. Radio Sci 47 RS0L22.  https://doi.org/10.1029/2011rs004959
  8. Dominici P, Zolesi B, Cander LR (1988) Preliminary results concerning atmospheric gravity waves deduced from foF2 large-scale oscillations. Phys Scr 37:516–522CrossRefGoogle Scholar
  9. Dominici P, Cander LR, Zolesi B (1997) On the origin of medium-period ionospheric waves and their possible modelling: a short review. Ann Geofis XL(5):1171–1178Google Scholar
  10. Francis SH (1974) A theory of medium-scale traveling ionospheric disturbances. J Geophys Res 79:5245–5259CrossRefGoogle Scholar
  11. Hernandes-Pajares M, Juan MJ, Sanz J (2006) Medium-scale traveling ionospheric disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res 111 A07S11.  https://doi.org/10.1029/2005ja011474
  12. Hines CO (1960) Internal atmospheric gravity waves in the upper atmosphere. Can J Phys 38:1441–1481CrossRefGoogle Scholar
  13. Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere. A review. Rev Geophys 20:293–315.  https://doi.org/10.1029/rg020i002p00293CrossRefGoogle Scholar
  14. Jakowski N, Stankov SM, Wilken V et al (2008) Ionospheric behaviour over Europe during the solar eclipse of 3 October 2005. J Atmos Sol-Terr Phys 70:836–853.  https://doi.org/10.1016/j.jastp.2007.02.016CrossRefGoogle Scholar
  15. Kirchengast G, Hocke K, Schlegel K (1996) The gravity wave-TID relationship: insight via theoretical model-EISCAT data comparison. J Atmos Terr Phys 58:233–243CrossRefGoogle Scholar
  16. Lanchester BS, Nygrén T, Huuskonen A et al (1991) Sporadic-E as a tracer for atmospheric waves. Planet Space Sci 39(10):1421–1434CrossRefGoogle Scholar
  17. McInerney JM, March DR, Liu H-L (2018) Simulation of the August 21, 2017 solar eclipse using the Whole Atmosphere Community Climate Model—eXtended. Geophys Res Lett.  https://doi.org/10.1029/2018gl077723CrossRefGoogle Scholar
  18. Mikhailov AV, Perrone L (2009) Pre-storm NmF2 enhancements at middle latitudes: delusion or reality? Ann Geophys 27:1321–1330CrossRefGoogle Scholar
  19. Paznukhov VV, Galushko VG, Reinisch BW (2012) Digisonde observations of AGWs/TIDs with frequency and angular sounding technique. Adv Space Res 49(4):700–710.  https://doi.org/10.1016/j.asr.2011.11.012CrossRefGoogle Scholar
  20. Reinisch BW, Galkin I, Belehaki A et al (2018) Pilot ionosonde network for identification of traveling ionospheric disturbances. Radio Sci.  https://doi.org/10.1002/2017rs006263CrossRefGoogle Scholar
  21. Roble RG (2000) On the feasibility of developing a global atmospheric model extending from the ground to the exosphere. In: Siskind DE, Eckermann SD, Summers ME (eds) Atmospheric Science Across the Stratopause, vol 123. AGU Geophys Monogr Ser, Washington, pp 53– 67CrossRefGoogle Scholar
  22. Rodríguez-Bouza M, Paparini C, Otero X et al (2017) Southern European Ionospheric TEC Maps based on Kriging technique to monitor ionosphere behavior. Adv Space Res.  https://doi.org/10.1016/j.asr.2017.05.008CrossRefGoogle Scholar
  23. Shiokawa K, Otsuka Y, Ogawa T et al (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res. 107(A6).  https://doi.org/10.1029/2001ja000245
  24. Spoelstra TATh (1996) A climatology of quiet/disturbed ionospheric conditions derived from 22 years of Westerbork interferometer observations. J Atmos Terr Phys 58:1229–1258CrossRefGoogle Scholar
  25. Williams PJS, Crowley G, Schlegel K et al (1988) The generation and propagation of atmospheric gravity waves observed during the worldwide atmospheric gravity-wave study (WAGS). J Atmos Terr Phys 50:323–338CrossRefGoogle Scholar
  26. Yeh KC, Lin CH (1974) Acoustic-gravity waves in the upper atmosphere. Rev Geophys 12(2):193–216.  https://doi.org/10.1029/rg012i002p00193CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RAL Space, Science and Technology Facilities Council (STFC)Rutherford Appleton Laboratory (RAL)DidcotUK

Personalised recommendations