Advertisement

Ionospheric Variability

  • Ljiljana R. Cander
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The focus is on how ionospheric variability with height produces the different regions, which are the dominant features of the plasma medium under normal and extreme conditions over the European zone, during the last few Solar Cycles. Examples are given for months representing ionospheric summer, equinox, and winter conditions during low and high solar activity epochs, revealing significant solar and seasonal dependence, as well as local time dependence from one day to another during quiet geomagnetic conditions. Sudden TEC decreases during the most recent solar eclipses are reviewed.

Keywords

Ionospheric Region Ionospheric Variability Ionosonde N(h) profile IGS VTEC Ionospheric Noise Solar Eclipse 

References and Further Reading

  1. Badeke R, Borries C, Hoque MM et al (2018) Empirical forecast of quiet time ionospheric total electron content maps over Europe. Adv Space Res.  https://doi.org/10.1016/j.asr.2018.04.010CrossRefGoogle Scholar
  2. Bilitza D, Altadill D, Zhang Y et al (2014) The International Reference Ionosphere 2012-a model of international collaboration. J Space Weather Space Clim 4(A07).  https://doi.org/10.1051/swsc/2014004CrossRefGoogle Scholar
  3. Bjoland LM, Belyey V, Løvhaug UP et al (2016) An evaluation of International Reference Ionosphere electron density in the polar cap and cusp using EISCAT Svalbard radar measurements. Ann Geophys 34:751–758.  https://doi.org/10.5194/angeo-34-751-2016CrossRefGoogle Scholar
  4. Breed AM, Goodwin GL, Vandenber A-M et al (1997) Ionospheric total electron content and slab thickness determined in Australia. Radio Sci 32:1635–1643CrossRefGoogle Scholar
  5. Budden KG (1985) The propagation of radio waves. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Cander LR, Haralambous H (2011) On the importance of total electron content enhancements during the extreme solar minimum. Adv Space Res 47:304–311.  https://doi.org/10.1016/j.asr.2010.08.0262010CrossRefGoogle Scholar
  7. Chen G, Wu C, Huang X et al (2015) Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J Geophys Res 120:3009–3020.  https://doi.org/10.1002/2014ja020849CrossRefGoogle Scholar
  8. Ciraolo L, Azpilicueta F, Brunini C et al (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81:111–120CrossRefGoogle Scholar
  9. Davies K (1990) Ionospheric radio. Peter Peregrinus LTD, LondonCrossRefGoogle Scholar
  10. Davis MJ, Da Rosa AV (1970) Possible detection of atmospheric gravity waves generated by the solar eclipse. Nature 226:1123CrossRefGoogle Scholar
  11. Deminova GF (2007) Maps of foF2, hmF2, and plasma frequency above F2-layer peak in the night-time low-latitude ionosphere derived from Intercosmos-19 satellite topside sounding data. Ann Geophys 25:1827–1835CrossRefGoogle Scholar
  12. Dominici P (1993) Ionosfera. Enciclopedia delle scienze fisiche III:298–312Google Scholar
  13. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83:191–198.  https://doi.org/10.1007/s00190-008-0300-3CrossRefGoogle Scholar
  14. Forbes JM, Palo SE, Zhang X (2000) Variability of the ionosphere. J Atmos Sol-Terr Phys 62:685–693CrossRefGoogle Scholar
  15. Hernandez-Pajares M, Juan JM, Sanz J et al (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83:263–275.  https://doi.org/10.1007/s00190-008-0266-1CrossRefGoogle Scholar
  16. Hoque MM, Wenzel D, Jakowski N et al (2016) Ionospheric response over Europe during the solar eclipse of March 20, 2015. J Space Weather Space Clim.  https://doi.org/10.1051/swsc/2016032CrossRefGoogle Scholar
  17. Jakowski N, Stankov SM, Wilken V et al (2008) Ionospheric behaviour over Europe during the solar eclipse of 3 October 2005. J Atmos Sol-Terr Phys 70(6):835–946.  https://doi.org/10.1016/j.jastp.2007.02.016CrossRefGoogle Scholar
  18. Johnston HF (1943) Mean K-indices from twenty one magnetic observatories and five quiet and five disturbed days for 1942. Terr Magn Atmos Elec 47:219.  https://doi.org/10.1029/te048i004p00219CrossRefGoogle Scholar
  19. Kersley L, Malan D, Pryse SE et al (2004) Total electron content—a key parameter in propagation: measurement and use in ionospheric imaging. Ann Geofis 47:1067–1091Google Scholar
  20. Klobuchar JA (1978) Ionospheric effects on satellite navigation and air traffic control systems. Recent advances in radio and optical propagation for modern communication, navigation, and detection Systems. In: AGARD Proceedings—LS—93. NTIS, Springfield VA. ISBN 92-835-1280-4Google Scholar
  21. Knight HK, Galkin IA, Reinisch BW (2018) Auroral ionospheric E region parameters obtained from satellite‐based far ultraviolet and ground‐based ionosonde observations: 1. Data, methods, and comparisons. J Geophys Res 123.  https://doi.org/10.1029/2018ja025263Google Scholar
  22. Lloyd H (1861) On Earth-currents, and their connection with the diurnal changes of the horizontal magnetic needle. Trans Roy Irish Acad 24:115–141Google Scholar
  23. Mendillo M, Rishbeth H, Roble RG et al (2002) Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere. J Atmos Sol-Terr Phys 64:1911–1931CrossRefGoogle Scholar
  24. Mendillo M, Huang C-L, Pi X et al (2005) The global ionospheric asymmetry in total electron content. J Atmos Solar-Terr Phys 67:1377–1387CrossRefGoogle Scholar
  25. Mikhailov AV, Depueva AK, Leschinskaya (2004) Morphology of quiet time F2-layer disturbances: high and lower latitudes. Int J Geomag Aeronom 5:1–14.  https://doi.org/10.1029/2003gi000058CrossRefGoogle Scholar
  26. Mikhailov AV, Perrone L, Smirnova N (2012) Two types of positive disturbances in the daytime mid-latitude F2-layer: morphology and formation mechanisms. J Atmos Sol-Terr Phy 81:59–75CrossRefGoogle Scholar
  27. Misra P, Enge P (2004) Global positioning system: signals, measurements and performance. Ganga-Jamuna Press, LincolnGoogle Scholar
  28. Pietrella M, Perrone L, Fontana G et al (2009) Oblique-incidence ionospheric soundings over Central Europe and their application for testing now casting and long term prediction models. Adv Space Res.  https://doi.org/10.1016/j.asr.2008.09
  29. Piggott WR, Rawer K (1972a) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23. National Oceanic and Atmospheric Administration, BoulderGoogle Scholar
  30. Piggott WR, Rawer K (1972b) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23A. Second Edition, Revision of Chapters 1–4. National Oceanic and Atmospheric Administration, BoulderGoogle Scholar
  31. Prölss GW (1995) Ionospheric F-region storms. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 2. CRCPress, Boca Raton, pp 195–248Google Scholar
  32. Reinisch BW, Galkin IA (2011) Global Ionospheric Radio Observatory (GIRO). Earth Planets Space 63:377–381.  https://doi.org/10.5047/eps.2011.03.001CrossRefGoogle Scholar
  33. Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Elsevier, New YorkGoogle Scholar
  34. Rishbeth H, Mendillo M (2001) Patterns of F2-layer variability. J Atmos Sol-Terr Phys 63:1661–1680CrossRefGoogle Scholar
  35. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Dissertation, Astronomical Institute University of BerneGoogle Scholar
  36. Shi S, Yang G, Jiang G et al (2017) Wuhan ionospheric oblique backscattering sounding system and its applications—A review. Sensors.  https://doi.org/10.3390/s17061430CrossRefGoogle Scholar
  37. Stankov SM, Bergeot N, Berghmans D et al (2017) Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J Space Weather Space Clim.  https://doi.org/10.1051/swsc/2017017CrossRefGoogle Scholar
  38. Titheridge JE (1985) Ionogram analysis with the generalized program POLAN. Rep UAG-93 World Data Center A for Solar Terr Phys, NOAA Environmental Data Service, AshevilleGoogle Scholar
  39. Tsai HF, Liu JY (1999) Ionospheric total electron content response to solar eclipses. J Geophys Res 104:12,657–12,668CrossRefGoogle Scholar
  40. Wang C, Rosen IG, Tsurutani BT et al (2016) Statistical characterization of ionosphere anomalies and their relationship to space weather events. J Space Weather Space Clim 6:A5.  https://doi.org/10.1051/swsc/2015046CrossRefGoogle Scholar
  41. Zhao B, Wan W, Liu L et al (2008) Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day. J Geophys Res 113:A11302.  https://doi.org/10.1029/2007ja012987CrossRefGoogle Scholar
  42. Zolesi B, Cander LR (2014) Ionospheric prediction and forecasting. Springer, Heidelberg, New York, Dordrecht, London.  https://doi.org/10.1007/978-3-642-38430-1, eBook: ISBN 978-3-642-38430-1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RAL Space, Science and Technology Facilities Council (STFC)Rutherford Appleton Laboratory (RAL)DidcotUK

Personalised recommendations