Advertisement

Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy

  • Tang Gao
  • Anyao Bi
  • Shuiqi Yang
  • Yi Liu
  • Xiangqi Kong
  • Wenbin Zeng
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1126)

Abstract

Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.

Keywords

Prostate cancer Molecular imaging Molecular probe Biomarker Nanoparticles Cancer treatment 

Notes

Acknowledgement

We are grateful for the financial supports from National Natural Science Foundation of China (81741134, 81671756 and 81271634), and Key Research Project of Science and Technology Foundation of Hunan Province (2017SK2093).

References

  1. 1.
    Adams J (1853) The case of scirrhous of the prostate gland with corresponding affliction of the lymphatic glands in the lumbar region and in the pelvis. Lancet 1(1):393–393Google Scholar
  2. 2.
    Ito K (2014) Prostate cancer in Asian men. Nat Rev Urol 11(4):197–212PubMedGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29Google Scholar
  4. 4.
    Thompson IM Jr, Cabang AB, Wargovich MJ (2014) Future directions in the prevention of prostate cancer. Nat Rev Clin Oncol 11(1):49–60PubMedGoogle Scholar
  5. 5.
    Ravindranathan P, Lee T-K, Yang L, Centenera MM, Butler L, Tilley WD, Hsieh J-T, Ahn J-M, Raj GV (2013) Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 4:1923–1934PubMedGoogle Scholar
  6. 6.
    Picchio M, Mapelli P, Panebianco V, Castellucci P, Incerti E, Briganti A, Gandaglia G, Kirienko M, Barchetti F, Nanni C (2015) Imaging biomarkers in prostate cancer: role of PET/CT and MRI. Eur J Nucl Med Mol Imaging 42(4):644–655PubMedGoogle Scholar
  7. 7.
    Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat Rev Cancer 13(9):653–662PubMedPubMedCentralGoogle Scholar
  8. 8.
    Komljenovic D, Wiessler M, Waldeck W, Ehemann V, Pipkorn R, Schrenk H-H, Debus J, Braun K (2016) NIR-cyanine dye linker: a promising candidate for isochoric fluorescence imaging in molecular cancer diagnostics and therapy monitoring. Theranostics 6(1):131–142PubMedPubMedCentralGoogle Scholar
  9. 9.
    Klotz L, Emberton M (2014) Management of low risk prostate cancer [mdash] active surveillance and focal therapy. Nat Rev Clin Oncol 11(6):324–334PubMedGoogle Scholar
  10. 10.
    Mohiuddin JJ, Baker BR, Chen RC (2015) Radiotherapy for high-risk prostate cancer. Nat Rev Urol 12(3):145–154PubMedGoogle Scholar
  11. 11.
    Yasufuku T, Arakawa S, Fujisawa M, Shigemura K, Matsumoto O (2010) Combination chemotherapy with weekly paclitaxel or docetaxel, carboplatin, and estramustine for hormone-refractory prostate cancer. J Infect Chemother 16(3):200–205PubMedGoogle Scholar
  12. 12.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512Google Scholar
  13. 13.
    Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hambley TW (2009) Is anticancer drug development heading in the right direction? Cancer Res 69(4):1259–1262PubMedGoogle Scholar
  15. 15.
    Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443PubMedGoogle Scholar
  16. 16.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171PubMedGoogle Scholar
  17. 17.
    Constantinou J, Feneley MR (2006) PSA testing: an evolving relationship with prostate cancer screening. Prostate Cancer Prostatic Dis 9(1):6–13PubMedGoogle Scholar
  18. 18.
    Esfahani M, Ataei N, Panjehpour M (2015) Biomarkers for evaluation of prostate cancer prognosis. Asian Pac J Cancer Prev 16(7):2601–2611PubMedGoogle Scholar
  19. 19.
    Chang SS (2004) Overview of prostate-specific membrane antigen. Rev Urol 6(Suppl 10):S13PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kelly KA, Setlur SR, Ross R, Anbazhagan R, Waterman P, Rubin MA, Weissleder R (2008) Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res 68(7):2286–2291PubMedPubMedCentralGoogle Scholar
  21. 21.
    Saleem M, Adhami VM, Zhong W, Longley BJ, Lin C-Y, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H (2006) A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15(2):217–227PubMedGoogle Scholar
  22. 22.
    Härmä H, Soukka T, Lövgren T (2001) Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 47(3):561–568PubMedGoogle Scholar
  23. 23.
    Ferguson RA, Yu H, Kalyvas M, Zammit S, Diamandis EP (1996) Ultrasensitive detection of prostate-specific antigen by a time-resolved immunofluorometric assay and the immulite immunochemiluminescent third-generation assay: potential applications in prostate and breast cancers. Clin Chem 42(5):675–684PubMedGoogle Scholar
  24. 24.
    Liu GL, Chen FF, Ellman JA, Lee LP (2006) Peptide-nanoparticle hybrid Sers probe for dynamic detection of active cancer biomarker enzymes. Conf Proc IEEE Engl Med Biol Soc 1:795–798Google Scholar
  25. 25.
    Gao XH (2009) QD barcodes for biosensing and detection. Annu Int Conf IEEE Eng Med Biol Soc 2009:6372–6373Google Scholar
  26. 26.
    Xu J, Zhou S, Tu D, Zheng W, Huang P, Li R, Chen Z, Huang M, Chen X (2016) Sub-5 nm lanthanide-doped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen. Chem Sci 7(4):2572–2578PubMedPubMedCentralGoogle Scholar
  27. 27.
    O’Keefe DS, Bacich DJ, Heston WD (2004) Comparative analysis of prostate-specific membrane antigen (PSMA) versus a prostate-specific membrane antigen-like gene. Prostate 58(2):200–210PubMedGoogle Scholar
  28. 28.
    Kasten BB, Liu T, Nedrowbyers JR, Benny PD, Berkman CE (2013) Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioorg Med Chem Lett 23(2):565–568PubMedGoogle Scholar
  29. 29.
    Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V (2011) Eau guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59(1):61–71PubMedGoogle Scholar
  30. 30.
    Yazdan MS, Naghmeh N, Oshani D, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine 6(1):2963–2980Google Scholar
  31. 31.
    Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450PubMedGoogle Scholar
  32. 32.
    Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8(2):111–128PubMedGoogle Scholar
  33. 33.
    Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chin J Clin Oncol 114(21):10869–10939Google Scholar
  34. 34.
    Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K (2012) Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 64(13):1447–1458PubMedGoogle Scholar
  35. 35.
    Shapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14(3):150–163PubMedGoogle Scholar
  36. 36.
    Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2009) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized pt(iv) prodrug-plga-peg nanoparticles. Proc Natl Acad Sci U S A 2009(45):157–158Google Scholar
  37. 37.
    Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A 108(5):1850–1885PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A 107(42):17939–17944PubMedPubMedCentralGoogle Scholar
  39. 39.
    Broc-Ryckewaert DL, Carpentier R, Lipka E, Daher S, Vaccher C, Betbeder D (2013) Development of innovative paclitaxel-loaded small plga nanoparticles: study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Int J Pharm 454(2):712–719PubMedGoogle Scholar
  40. 40.
    Hoang B, Ernsting MJ, Murakami M, Undzys E, Li S (2014) Docetaxel–carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer. Int J Pharm 471(1–2):224–233PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pearce AK, Simpson JD, Fletcher NL, Houston ZH, Fuchs AV, Russell PJ (2017) Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials 141(1):330–339PubMedGoogle Scholar
  42. 42.
    Sato A, Itcho N, Ishiguro H, Okamoto D, Kobayashi N, Kawai K (2013) Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death. Int J Nanomedicine 8:3151–3160PubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang W, Zheng X, Shen S, Wang X (2015) Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line pc3. Biochem Biophys Res Commun 466(2):278–282PubMedGoogle Scholar
  44. 44.
    Kumar A, Huo S, Zhang X, Liu J, Tan A, Li S, Jin S, Xue X, Zhao Y, Ji T, Han L, Liu H, Zhang X, Zhang J, Zou G, Wang T, Tang S, Liang XJ (2014) Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(iv) drug for prostate cancer treatment. ACS Nano 8(5):4205–4220PubMedGoogle Scholar
  45. 45.
    Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N (2014) Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35(30):8635–8648PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yallapu MM, Dobberpuhl MR, Maher DM, Jaggi M, Chauhan SC (2012) Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 13(1):120–128PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sanna V, Singh CK, Jashari R, Adhami VM, Chamcheu JC, Rady I (2017) Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci Rep 7:41573–41588PubMedPubMedCentralGoogle Scholar
  48. 48.
    Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in pten knockout mice. Int J Cancer 125(1):1–8PubMedGoogle Scholar
  49. 49.
    Shenoi MM, Iltis I, Choi J, Koonce NA, Metzger GJ, Griffin RJ (2013) Nanoparticle delivered vascular disrupting agents (vdas): use of tnf-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol Pharm 10(5):1683–1694PubMedPubMedCentralGoogle Scholar
  50. 50.
    Soltani F, Sankianm HA, Ramezani M (2013) Development of a novel histone H1- based recombinant fusion peptide for targeted non-viral gene delivery. Int J Pharm 441(1–2):307–315PubMedGoogle Scholar
  51. 51.
    Barbato C, Ruberti F, Cogoni C (2009) Searching for MIND: microRNAs in neurodegenerative diseases. J Biomed Biotechnol 2009(1):871313–871321PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D (2011) A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microrna. Biomaterials 32(21):4968–4975PubMedGoogle Scholar
  53. 53.
    Li L, Wei Y, Gong C (2015) Polymeric nanocarriers for non-viral gene delivery. J Biomed Nanotechnol 11(5):739–770PubMedGoogle Scholar
  54. 54.
    Park TG, Ji HJ, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58(4):467–486PubMedGoogle Scholar
  55. 55.
    Jing GJ, Fu ZG, Dan B, Lin LR, Yang TC, Shi SL (2010) Development and evaluation of a novel nano-scale vector for sirna. J Cell Biochem 111(4):881–888PubMedGoogle Scholar
  56. 56.
    Becker AL, Orlotti NI, Folini M, Cavalieri F, Zelikin AN, Johnston AP, Zaffaroni N, Caruso F (2011) Redox-active polymer microcapsules for the delivery of a survivin-specific sirna in prostate cancer cells. ACS Nano 5(2):1335–1344PubMedGoogle Scholar
  57. 57.
    Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC, Tian S, Napier ME, Pohlhaus PD, Rolland JP, Desimone JM (2012) Delivery of multiple sirnas using lipid-coated plga nanoparticles for treatment of prostate cancer. Nano Lett 12(1):287–292PubMedGoogle Scholar
  58. 58.
    De MI, Imbertie L, Rieumajou V, Major M, Kravtzoff R, Betbeder D (2000) Proofs of the structure of lipid coated nanoparticles (smbv) used as drug carriers. Pharm Res 17(7):817–824Google Scholar
  59. 59.
    Walsh M, Tangney M, O’Neill MJ, Larkin JO, Soden DM, Mckenna SL, Darcy R, O’Sullivan GC, O’Driscoll CM (2006) Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy. Mol Pharm 3(6):644–653PubMedGoogle Scholar
  60. 60.
    Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T (2009) In vivo siRNA delivery with dendritic poly(Llysine) for the treatment of hypercholesterolemia. Mol BioSyst 5(11):1306–1310PubMedGoogle Scholar
  61. 61.
    Guo J, Bourre L, Soden DM, O’Sullivan GC, O’Driscoll C (2011) Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics. Biotechnol Adv 29(4):402–417PubMedGoogle Scholar
  62. 62.
    Guo J, Cheng WP, Gu J, Ding C, Qu X, Yang Z, Yang Z, O’Driscoll C (2012) Systemic delivery of therapeutic small interfering rna using a PH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. Eur J Pharm Sci 45(5):521–532PubMedGoogle Scholar
  63. 63.
    Jere D, Jiang HL, Arote R, Kim YK, Choi YJ, Cho MH, Akaike T, Cho CS (2009) Degradable polyethylenimines as DNA and small-interfering RNA carriers. Expert Opin Drug Deliv 6(8):827–834PubMedGoogle Scholar
  64. 64.
    Demeneix B, Behr JP (2005) Polyethylenimine (PEI). Adv Genet 53(1):217–230PubMedGoogle Scholar
  65. 65.
    Dehshahri A, Oskuee RK, Shier WT, Hatefi A, Ramezani M (2009) Gene transfer efficiency of high primary amine content, hydrophobic, alkyl-oligoamine derivatives of polyethylenimine. Biomaterials 30(25):4187–4194PubMedGoogle Scholar
  66. 66.
    Xue HY, Narvikar M, Zhao JB, Wong HL (2013) Lipid encapsulation of cationic polymers in hybrid nanocarriers reduces their non-specific toxicity to breast epithelial cells. Pharm Res 30(2):572–583PubMedGoogle Scholar
  67. 67.
    Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, Xi Y, Li Y (2009) The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30(2):226–232PubMedGoogle Scholar
  68. 68.
    Pozo-Rodríguez AD, Pujals S, Delgado D, Solinís MA, Gascón AR, Giralt E, Pedraz JL (2009) A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release 133(1):52–59PubMedGoogle Scholar
  69. 69.
    Wang MT, Jin Y, Yang YX, Zhao CY, Yang HY, Xu XF (2010) In vivo biodistribution, anti-inflammatory, and hepatoprotective effects of liver targeting dexamethasone acetate loaded nanostructured lipid carrier system. Int J Nanomedicine 5(1):487–497PubMedPubMedCentralGoogle Scholar
  70. 70.
    Stevens PJ, Sekido M, Lee RJ (2004) A folate-receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res 21(12):2153–2157PubMedGoogle Scholar
  71. 71.
    Huang W, Lv M, Gao Z (2011) Polyethylenimine grafted with diblock copolymers of polyethylene glycol and polycaprolactone as sirna delivery vector. J Control Release 152(Suppl 1):e143–e145PubMedGoogle Scholar
  72. 72.
    Wu Y, Yu J, Liu Y, Yuan L, Yan H, Jing J, Xu G (2014) Delivery of EZH2-shrna with mpeg-PEI nanoparticles for the treatment of prostate cancer in vitro. Int J Mol Med 33(6):1563–1569PubMedGoogle Scholar
  73. 73.
    Son S, Hwang DW, Singha K, Jeong JH, Park TG, Lee DS, Kim WJ (2011) Rvg peptide tethered bioreducible polyethylenimine for gene delivery to brain. J Control Release 155(1):18–25PubMedGoogle Scholar
  74. 74.
    Zhang T, Xue X, He D, Hsieh JT (2015) A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett 365(2):156–165PubMedGoogle Scholar
  75. 75.
    Tarokh Z, Naderi-Manesh H, Nazari M (2016) Towards prostate cancer gene therapy: development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery. Eur J Pharm Sci 99:209–218PubMedGoogle Scholar
  76. 76.
    Tai W, Qin B, Cheng K (2010) Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm 7(2):543–556PubMedGoogle Scholar
  77. 77.
    Shibata MA, Morimoto J, Shibata E, Otsuki Y (2008) Combination therapy with short interfering RNA vectors against VEGF-c and VEGF-α suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 15(12):776–786PubMedGoogle Scholar
  78. 78.
    Han L, Zhang AL, Xu P, Yue X, Yang Y, Wang GX, Jia ZF, Pu PY, Kang CS (2010) Combination gene therapy with PTEN and EGFR siRNA suppresses U251 malignant glioma cell growth in vitro and in vivo. Med Oncol 27(3):843–852PubMedGoogle Scholar
  79. 79.
    Grimm D, Kay MA (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets. Mol Ther 15(5):878–888PubMedGoogle Scholar
  80. 80.
    Lee SJ, Yook S, Yhee JY, Yoon HY, Kim MG, Ku SH, Kim SH, Park JH, Jeong JH, Kwon IC, Lee S, Lee H, Kim K (2015) Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. J Control Release 220(Pt B):631–641PubMedGoogle Scholar
  81. 81.
    Wang Y, Gao S, Ye WH, Yoon HS, Yang YY (2006) Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5(10):791–796PubMedGoogle Scholar
  82. 82.
    Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384PubMedPubMedCentralGoogle Scholar
  83. 83.
    Xu X, Xie K, Zhang XQ, Pridgen EM, Park GY, Cui DS, Shi J, Wu J, Kantoff PW, Lippard SJ, Langer R, Walker GC, Farokhzad OC (2013) Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci U S A 110(46):18638–18643PubMedPubMedCentralGoogle Scholar
  84. 84.
    Pang ST, Lin FW, Chuang CK, Yang HW (2017) Co-delivery of docetaxel and p44/42 mapk sirna using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol Biosci 17(5):1600421Google Scholar
  85. 85.
    Tandon P, Farahani K (2011) Nci image guided drug delivery summit. Cancer Res 71(2):314–317PubMedPubMedCentralGoogle Scholar
  86. 86.
    Chen Z, Penet MF, Nimmagadda S, Li C, Banerjee SR, Winnard PT, Artemov JD, Glunde K, Pomper MG, Bhujwalla ZM (2012) PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano 6(9):7752–7762PubMedPubMedCentralGoogle Scholar
  87. 87.
    Lin Q, Jin CS, Huang H, Ding L, Zhang Z, Chen J, Zheng G (2014) Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. Small 10(15):3072–3082PubMedGoogle Scholar
  88. 88.
    Shao K, Singha S, Clementecasares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle-based immunotherapy for cancer. ACS Nano 9(1):16–30PubMedGoogle Scholar
  89. 89.
    Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedPubMedCentralGoogle Scholar
  90. 90.
    Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D (2004) Part I: vaccines for solid tumours. Lancet Oncol 5(11):681–689PubMedGoogle Scholar
  91. 91.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedGoogle Scholar
  92. 92.
    Taurin S, Nehoff H, Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164(3):265–275PubMedGoogle Scholar
  93. 93.
    Zolnik BS, Asadrieh GF (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465PubMedGoogle Scholar
  94. 94.
    Dwivedi PD, Tripathi A, Ansari KM, Shanker R, Das M (2011) Impact of nanoparticles on the immune system. J Biomed Nanotechnol 7(1):193–194PubMedGoogle Scholar
  95. 95.
    Leleux J, Roy K (2013) Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2(1):72–94PubMedGoogle Scholar
  96. 96.
    Lee IH, An S, Yu MK, Kwon HK, Im SH, Jon S (2011) Targeted chemoimmunotherapy using drug-loaded aptamer–dendrimer bioconjugates. J Control Release 155(3):435–441PubMedGoogle Scholar
  97. 97.
    Sun JJ, Chen YC, Huang YX, Zhao WC, Liu YH, Venkataramanan R, Lu BF, Li S (2017) Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. Acta Pharmacol Sin 38(6):823–834PubMedPubMedCentralGoogle Scholar
  98. 98.
    Allison RR, Mota HC, Bagnato VS, Sibata CH (2008) Bio-nanotechnology and photodynamic therapy-state of the art review. Photodiagnosis Photodyn Ther 5(1):19–28PubMedGoogle Scholar
  99. 99.
    Jankun J, Keck RW, Skrzypczak-Jankun E, Lilge L, Selman SH (2005) Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy. BJU Int 95(9):1237–1244PubMedGoogle Scholar
  100. 100.
    Mitton D, Ackroyd R (2008) A brief overview of photodynamic therapy in Europe. Photodiagnosis Photodyn Ther 5(2):103–111PubMedGoogle Scholar
  101. 101.
    Jankun J (2011) Protein-based nanotechnology: antibody conjugated with photosensitizer in targeted anticancer photoimmunotherapy. Int J Oncol 39(4):949–953PubMedGoogle Scholar
  102. 102.
    Carreño LJ, González PA, Bueno SM, Riedel CA, Kalergis AM (2011) Modulation of the dendritic cell-t-cell synapse to promote pathogen immunity and prevent autoimmunity. Immunotherapy 3(4):6–11PubMedGoogle Scholar
  103. 103.
    Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ (2012) Synapse-directed delivery of immunomodulators using t-cell-conjugated nanoparticles. Biomaterials 33(23):5776–5787PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tang Gao
    • 1
    • 2
  • Anyao Bi
    • 1
    • 2
  • Shuiqi Yang
    • 1
    • 2
  • Yi Liu
    • 1
    • 2
  • Xiangqi Kong
    • 1
    • 2
  • Wenbin Zeng
    • 1
    • 2
  1. 1.Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
  2. 2.Molecular Imaging Research CenterCentral South UniversityChangshaChina

Personalised recommendations