Advertisement

Sequence-Based Classification and Identification of Prokaryotes

  • Henrik ChristensenEmail author
  • John Elmerdahl Olsen
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Bioinformatics is important to classification and identification since all prokaryotes have been classified based on the phylogeny of the 16S rRNA gene sequence and this character has also to a great extent been the gold standard for identification as well. Whole genomic sequences are increasingly used for classification and identification. This includes in silico estimates of DNA-DNA hybridization which has been used for the classification of all species. Classifications of species, genera, families, orders, classes, and phyla are achieved by 16S rRNA sequence-based phylogenetic analysis and more recently phylogenetic analysis of other conserved genes and proteins mainly determined by whole genomic sequencing. The rules for the naming of prokaryotes have been formulated in the International Code of Nomenclature of Prokaryotes. Sequence-based identification can be complemented by other genes besides the 16S rRNA gene sequences. The rpoB gene sequence is frequently used since it allows the separation of some species that cannot be identified by 16S rRNA gene sequence comparison. Identification of prokaryotes that cannot be cultured is possible by 16S rRNA gene amplicon sequencing as further described in Chap. 8.

References

  1. Adékambi, T., Drancourt, M. & Raoult, D. 2009. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol 17, 37–45.CrossRefPubMedGoogle Scholar
  2. Auch, A. F., Von Jan, M., Klenk, H-P., Göker, M. et al. 2010a. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117–134.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Auch, A. F., Klenk, H-P., Göker, M. 2010b. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Standards in Genomic Sciences 2: 142–148.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. 1994. Proc. Natl. Acad. Sci. USA91, 1609–1613.Google Scholar
  5. Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., Kjelleberg, S. 2007. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. 73, 278–288.CrossRefPubMedGoogle Scholar
  6. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., Da Costa, M., Rooney, A. P., Yi, H., Xu, X.-W., De Meyer, S. & Trujillo, M. E. 2018. Minimal standards for the use of genome data for the taxonomy of prokaryotes. IJSEM 68, 461–466.PubMedGoogle Scholar
  7. DeLong, E. F. 1992. Proc. Natl. Acad. Sci. USA 89, 56855689.CrossRefPubMedGoogle Scholar
  8. Dewhirst, F. E., Paster, B. J., Olsen, I., & Fraser, G. J. 1992. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences. J Bacteriol. 174, 2002–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Edwards, U., Rogall, T., Blöcker, H., Emde, M., Böttger, E. C. 1989. Isolation and direct complete nucleotiwde determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843–53.Google Scholar
  10. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 57, 81–91.CrossRefPubMedGoogle Scholar
  11. Harris, D. L., Glock, R. D., Christensen C. R., Kinyon, J. M. 1972. Inoculation of pigs with Treponema hyodysenteriae (new species) and reproduction of the disease. Vet Med Small Anim Clin.67, 61–64.PubMedGoogle Scholar
  12. Hovind-Hougen, K., Birch-Andersen, A., Henrik-Nielsen, R., Orhold, M., Pedersen, J. O., Teglbjaerg, P. S. & Thaysen, E. H. 1982. Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov. J. Clin. Microbiol. 16, 1127–1136.Google Scholar
  13. Kim, M., Park, S. C., Baek, I., Chun, J. 2015. Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. Syst Appl Microbiol. 38:79–83.CrossRefPubMedGoogle Scholar
  14. Konstantinidis, K. T. & Tiedjem J. M. 2005. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–64.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Korczak, B., Christensen, H., Emler, S., Frey, J. & Kuhnert, P. 2004. Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol. 54, 1393–1399.CrossRefPubMedGoogle Scholar
  16. Kuhnert, P., Frey, J., Lang, N. P. & Mayfield, L. 2002. Phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis clinical strains reveals a clear species clustering. Int J Syst Evol Microbiol. 52, 1391–5.PubMedGoogle Scholar
  17. Kuhnert, P. & Korczak, B. M. 2006. Prediction of whole genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152, 2537–2548.CrossRefPubMedGoogle Scholar
  18. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., Pace, N. R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 82:6955–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lepp, P. W., Brinig, M. M., Ouverney, C. C., Palm, K., Armitage, G. C. & Relman, D. A. 2004. Methanogenic Archaea and human periodontal disease. PNAS 101, 6176–6181.CrossRefPubMedGoogle Scholar
  20. Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., Gordon, J. I. 2008. Evolution of mammals and their gut microbes. Science 320, 1647–51.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ochiai, S., Adachi, Y. & Mori, K. 1997. Unification of the genera Serpulina and Brachyspira, and proposal of Brachyspira hyodysenteriae Comb. Nov., Brachyspira innocens Comb. Nov. and Brachyspira pilosicoli Comb. Nov. Microbiol. Immunol. 41, 445–452.CrossRefPubMedGoogle Scholar
  22. Oren, A., da Costa, M.S., Garrity, G.M., Rainey, F.A., Rosselló-Móra, R., Schink, B., Sutcliffe, I., Trujillo, M. E., Whitman, W. B. 2015. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol. 65, 4284–7. doi:  https://doi.org/10.1099/ijsem.0.000664.CrossRefPubMedGoogle Scholar
  23. Oren, A., Parte, A., Garrity, G. M. 2016. Implementation of Rule 8 of the International Code of Nomenclature of Prokaryotes for the renaming of classes. Request for an Opinion. Int J Syst Evol Microbiol. 66, 4296–8.CrossRefPubMedGoogle Scholar
  24. Parker, C. T., Tindall, B. J. & Garrity, G. M. 2015. International Code of Nomenclature of Prokaryotes. Int. J. Syst. Evol. Microbiol. In press.Google Scholar
  25. Parte, A. C. 2014. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014:D613-6. doi:  https://doi.org/10.1093/nar/gkt1111. Int J Syst Evol Microbiol. 2016 Oct;66(10):4296–4298. doi:  https://doi.org/10.1099/ijsem.0.001319. Epub 2016 Jul 21.
  26. Qin, Q. L., Xie, B. B., Zhang, X. Y., Chen, X. L., Zhou, B. C., Zhou, J., Oren, A., Zhang, Y. Z. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210–2215.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Richter, M. & Rosello-Mora, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106, 19126–31CrossRefPubMedGoogle Scholar
  28. Rosselló-Móra, R., & Amann, R. 2015. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol. 38:209–16.CrossRefPubMedGoogle Scholar
  29. Rosenbach, F. J. 1884. Microorganismen bei den Wund-Infections-Krankheiten des Menschen. J.F. Bergmann, Wiesbaden, pp. 1–122.Google Scholar
  30. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors) 1980. Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. 30, 225–420.Google Scholar
  31. Simmon, K. E., Croft, A. C. & Petti, C. A. 2006. Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. J. Clin. Microbiol. 44, 4400–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Stanton, T. B., Jensen, N. S., Casey, T. A., Tordoff, L. A., Dewhirst, F. E. & Paster, B. J. 1991. Reclassification of Treponema hyodysenteriae and Treponema innocens in a new genus, Serpula gen. nov., as Serpula hyodysenteriae comb. nov. and Serpula innocens comb. nov. Int. J. Syst. Bacteriol. 41, 50–58.CrossRefPubMedGoogle Scholar
  33. Stanton, T. B. 1992. Proposal to change the genus designation Serpula to Serpulina gen. nov. containing the species Serpulina hyodysenteriae comb. nov. and Serpulina innocens comb. nov. Int. J. Syst. Bacteriol., 42, 189–190.CrossRefPubMedGoogle Scholar
  34. Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W., Kämpfer, P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60, 249–266.CrossRefPubMedGoogle Scholar
  35. Ward, D. M., Weller, R. & Baterson, M. M. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65.CrossRefPubMedGoogle Scholar
  36. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bact. 173, 697–703.CrossRefPubMedGoogle Scholar
  37. Yarza, P., Richter, M., Peplies, J., Euzeby, J., Amann, R., Schleifer, K. H., Ludwig, W., Glöckner, F. O., Rosselló-Móra, R. 2008. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 31, 241–50.CrossRefPubMedGoogle Scholar
  38. Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. & Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 67, 1613–1617.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zeigler, D. R. 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53, 1893–1900.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Veterinary Animal SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations