Pairwise Alignment, Multiple Alignment, and BLAST

  • Henrik ChristensenEmail author
  • John Elmerdahl Olsen
Part of the Learning Materials in Biosciences book series (LMB)


Quantitative comparison of sequences can be performed pairwise by aligning two sequences based on considerations of gaps representing insertions or deletions and matches between nucleotides and amino acids. Pairwise comparisons can be performed as global alignments if it is known that the sequences are homologous in their full length or by local alignments if it is known that one sequence is shorter than the other. The dynamic programming algorithms for constructing global and local alignments will be described in detail and relevant computer programs suggested. The different strategies behind multiple alignments are described including relevant computer programs. The search program BLAST is introduced in detail and different applications described.


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.CrossRefPubMedGoogle Scholar
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. 1999. Biological sequence analysis. Cambridge Univ. Press.Google Scholar
  4. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  5. Feng, D. F. & Dolittle, R. F. 1987. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–60.CrossRefPubMedGoogle Scholar
  6. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98.Google Scholar
  7. Higgins, D. G. & Sharp, P. M. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244.CrossRefPubMedGoogle Scholar
  8. Karlin, S., & Altschul, S. F. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci USA 87, 2264–8.CrossRefPubMedGoogle Scholar
  9. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.CrossRefGoogle Scholar
  10. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüssmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K. H. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Moreno-Hagelsieb, G. & Latimer, K. 2008. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24:319–24.CrossRefPubMedGoogle Scholar
  12. Needleman, S. B. & Wunsch, C. D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.CrossRefPubMedGoogle Scholar
  13. Nei, M. & Kumar, S. 2000. Molecular evolution and phylogenetics. Oxford University Press.Google Scholar
  14. Notredame, C., Higgins, D.G., Heringa, J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302: 205–217.CrossRefPubMedGoogle Scholar
  15. Rice, P., Longden, I., & Bleasby, A. 2000. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genetics 16:276–277.CrossRefGoogle Scholar
  16. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D. & Higgins, D. G. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using ClustalOmega. Mol. Syst. Biol. 7:539.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Smith, T. F., Waterman, M. S. & Fitch, W. M. 1981 Comparative biosequence metrics. J. Mol. Evol. 18, 38–46.CrossRefPubMedGoogle Scholar
  18. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Thompson, J. D., Plewniak, F. & Poch, O. 1999. BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs. Bioinformatics 15:87–88.CrossRefPubMedGoogle Scholar
  20. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., Barton, G. J. 2009. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Yamada, K.D., Tomii, K., Katoh, K. 2016. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics32, 3246–3251.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Zuker, M. & Jacobson, A. B. 1998. Using Reliability Information to Annotate RNA Secondary Structures. RNA 4, 669–679, 1998.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Veterinary Animal SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations