Advertisement

Doctrine of Equivalents and Sintered Silver (Ag) Paste as Bonding Materials

  • K. S. SiowEmail author
Chapter

Abstract

This chapter revisits the doctrine of equivalents (DOE) by reviewing previoius court cases to summarize and distill the main principles, and then, to select two pairs of US patents in the area of sintered silver (Ag) pastes to demonstrate their applications. The sintered Ag paste formulation is chosen as our case study because of the active patenting activities in the last 5 years. This interest stems from the urgency to find a lead-free bonding material to conform the EU environmental regulations and its excellent thermal-mechanical properties needed in the next generation of microelectronic packaging. This chapter demonstrates the limitations of DOE, and its applicability depends on the factors, such as prosecution history estoppel (PHE), public dedication, all-element rule, prior art, and the classification of nano-Ag materials. This article is expected to be useful for patent attorneys dealing with patent infringement cases related to nano-materials in the USA, as well as scientists and engineers who are working in the manufacturing industry to appreciate the DOE and PHE while analyzing the relevant patents in their job.

Keywords

Prosecution history estoppel Public dedication rule All-element rule Person having ordinary skill in the art (PHOSITA) Polymer dispersant Binder Dispersion medium Alkylamine Fatty acid 

Notes

Acknowledgment

The author greatly appreciate WIPO Scholarship for providing the financial support to attend his Master of Laws in Intellectual Property at the University of Turin-WIPO programme, and Universiti Kebangsaan Malaysia Research Grant (GUP-2017-055 “Production of Metallic Conducting Nanowires for Industrial Applications”) for this research chapter. He also acknowledged Prof. Craig Nard (Case Western University), Prof. Alessandro Cogo (University of Turin), and Dr. Maximiliano Marzetti (University of Turin) for their advices and guidance in writing this research work.

References

  1. 1.
    Winans v. Denmead, vol. 56 US, ed: US Supreme Court, 1854, p. 330Google Scholar
  2. 2.
    J.S. Cianfrani, An economic analysis of the doctrine of equivalents. Virginia J Law Tech Spring, 1–26 (1997)Google Scholar
  3. 3.
    Graver Tank & Mfg. Co. v. Linde Air Products Co., vol. 339 US, ed: US Supreme Court, 1950, p. 605Google Scholar
  4. 4.
    Warner-Jenkinson Co. v. Hilton Davis Chem. Co., vol. 520 US, ed: US Supreme Court, 1997, p. 17Google Scholar
  5. 5.
    Ethicon Endo-Surgery Inc. v. United States Surgical Corp, vol. 149 F.3d 1309, ed: US Supreme Court of Appeals, Federal Circuit, 1998, p. 1309Google Scholar
  6. 6.
    EMI Group North America Inc v. Intel Corp vol. 157 F.3d ed: US Court of Appeals, Federal Circuit, 1998, p. 887Google Scholar
  7. 7.
    Slimfold Manufacturing Co. v. Kinkead Industries, Inc, vol. 810 F.2d, ed: United States Court of Appeals, Federal Circuit, 1987, p. 1113Google Scholar
  8. 8.
    Festo Corp. v. Shoketsu Kinzoku Kogyo Kabushiki Co. Ltd., vol. 535 US, ed: US Supreme Court, 2002, p. 722Google Scholar
  9. 9.
    G.P. Belvis. The Doctrine of Equivalents and 112 Equivalents, (Brinks Gilson & Lione, 2017), www.brinksgilson.com/files/98.pdf. Accessed on 28 Oct 2017
  10. 10.
    Johnson & Johnston Associates Inc. v. R.E. Service Co, vol. 285 F.3d, ed: US Court of Appeals, Federal Circuit, 2002, p. 1046Google Scholar
  11. 11.
    Texas Instruments Inc. v. United States International Trade Commission, vol. 846 F.2d, ed: US Court of Appeals, Federal Circuit, 1988, p. 1369Google Scholar
  12. 12.
    K.S. Siow, Y.T. Lin, Identifying the development state of sintered ag as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 138, 020804-1–020804-13 (2016)Google Scholar
  13. 13.
    S.P. Lim, B. Pan, H. Zhang, W. Ng, B. Wu, K.S. Siow, S. Sabne, M. Tsuriya, High-temperature Pb-free die attach material project phase 1: survey result, in International Conference on Electronics Packaging, (Yamagata, Japan, 2017), pp. 51–56Google Scholar
  14. 14.
    K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Bai, Low-temperature sintering of nanoscale silver paste for semiconductor device interconnection, PhD (Materials Science and Engineering), Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University Blacksburg, Virginia, 2005Google Scholar
  16. 16.
    K. Kiełbasiński, J. Szałapak, M. Jakubowska, A. Młozniak, E. Zwierkowska, J. Krzemiński, M. Teodorczyk, Influence of nanoparticles content in silver paste on mechanical and electrical properties of LTJT joints. Adv. Powder Technol. 26, 907–913 (2015)CrossRefGoogle Scholar
  17. 17.
    T. Kim, Y. Joo, S. Choi, Power Module Using Sintering Die Attach and Manufacturing Method Thereof (Samsung Electro-Mechanics Co., US8630097B2, 2014)Google Scholar
  18. 18.
    United States Patent Classification System, Class 977, nanotechnology § 1. (USPTO, 2010), http://www.uspto.gov/go/classification/uspc977/defs977.pdf. Accessed on 2 Nov 2017
  19. 19.
    Y. Saito, S. Sasaki, Silver particle-containing composition, dispersion solution, and paste and method for manufacturing the same (Dowa Electron. Mater. Co., US9255205B2, 2013)Google Scholar
  20. 20.
    M. Boureghda, N. Desai, A. Lifton, O. Khaselev, M. Marczi, B. Singh, Methods of Attaching a Die to a Substrate (Alpha Metal Inc., US8555491B2, 2008)Google Scholar
  21. 21.
    T. Ogashiwa, M. Miyairi, Method of Bonding (Tanaka Kikinzoku Kogyo K.K., US7789287B2, 2010)Google Scholar
  22. 22.
    I.J. Rasiah, Electrically Conductive Thermal Interface (Honeywell Int. Inc., US7083850B2, 2006)Google Scholar
  23. 23.
    In re Soni, vol. 54 F.3d, ed: US Court of Appeals, Federal Circuit, 1995, p. 746Google Scholar
  24. 24.
    H. Zhang, W. Li, Y. Gao, H. Zhang, J. Jiu, K. Suganuma, Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent. J. Electron. Mater. 46, 5201–5208 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Voigt, E. Michelson, Nanotechnology-related inventions: infringement issues. Nanotechnol. Law Bus. 2(1), 45–53 (2005)Google Scholar
  26. 26.
    A. Wasson, Protecting the next small thing: nanotechnology and the reverse doctrine of equivalents. Duke Law Technol. Rev. 10 (2004)Google Scholar
  27. 27.
    A.L. Durham, Patent Law Essentials: A Concise Guide (Praeger, Westport, 1999)Google Scholar
  28. 28.
    H. Schwarzbauer, Method of Securing Electronic Components to a Substrate (Siemens AG., US4810672B2, 1987)Google Scholar
  29. 29.
    W. Baumgartner, J. Fellinger, Method of Fastening Electronic Components to a Substrate Using a Film (Siemens AG., US4856185, 1989)Google Scholar
  30. 30.
    G. Frens, J.T.G. Overbeek, Carey Lea’s colloidal silver. Colloid Poly. Sci. 233, 922–929 (1969)Google Scholar
  31. 31.
    H. Nagasawa, K. Kagoshima, N. Ogure, M. Hirose, Y. Chikamori, Bonding Material and Bonding Method (US20040245648A1, 2004)Google Scholar
  32. 32.
    K.S. Siow, M. Eugénie, Patent landscape and market segments of sintered silver as die attach materials in microelectronic packaging, in 37th International Electronics Manufacturing Technology (IEMT) & 18 Electronics Materials and Packaging (EMAP) Conference, (2016), pp. 1–6Google Scholar
  33. 33.
    K.S. Siow, A.A.O. Tay, P. Oruganti, Mechanical properties of nanocrystalline copper and nickel. Mater. Sci. Technol. 20, 285–294 (2004)CrossRefGoogle Scholar
  34. 34.
    A. Zattoni, D.C. Rambaldi, P. Reschiglian, M. Melucci, S. Krol, A.M.C. Garcia, A. Sanz-Medel, D. Roessner, C. Johann, Asymmetrical flow field-flow fractionation with multi-angle light scattering detection for the analysis of structured nanoparticles. J. Chromatogr. A 1216, 9106–9112 (2009)CrossRefGoogle Scholar
  35. 35.
    O.T. Mefford, M.R.J. Carroll, M.L. Vadala, J.D. Goff, R. Mejia-Ariza, M. Saunders, R.C. Woodward, T.G. St. Pierre, R.M. Davis, J.S. Riffle, Size analysis of PDMS−magnetite nanoparticle complexes: Experiment and theory. Chem. Mater. 20, 2184–2191 (2008)CrossRefGoogle Scholar
  36. 36.
    S.B. Rice, C. Chan, S.C. Brown, P. Eschbach, L. Han, D.S. Ensor, A.B. Stefaniak, J. Bonevich, A.E. Vladar, A.R.H. Walker, J. Zheng, C. Starnes, A. Stromberg, J. Ye, E.A. Grulke, Particle size distributions by transmission electron microscopy: An interlaboratory comparison case study. Metrologia 50, 663–678 (2013)CrossRefGoogle Scholar
  37. 37.
    Markman v. Westview Instruments, Inc, vol. 517 US ed: US Supreme Court, 1996, p. 370Google Scholar
  38. 38.
    W.A. DeVries, Meaning and interpretation in history. Hist. Theory 22, 253–263 (1983)CrossRefGoogle Scholar
  39. 39.
    L.B. Solum, The interpretation-construction distinction, Georgetown Public Law and Legal Theory Res. Paper No. 11-95, (2010), p. 95Google Scholar
  40. 40.
    C.A. Nard, A theory of claim interpretation. Harv. J. Law Technol. 14, 1–82 (2000)Google Scholar
  41. 41.
    K.S. Siow, Mechanical properties of Nano-Ag as die attach materials. J. Alloys Compd. 514, 6–14 (2012)CrossRefGoogle Scholar
  42. 42.
    Apotex v. Cephalon, vol. Civil Action No. 2:06-cv, ed: US District Court, 2010, p. 2768Google Scholar
  43. 43.
    M. Matsui, T. Tomura, T. Watanabe, K. Shimoyama, Conductive Paste (Bando Chem. Ind., US9783708B2, 2013)Google Scholar
  44. 44.
    M. Tobita, Y. Yasuda, E. Ide, J. Ushio, T. Morita, Optimal design of coating material for nanoparticles and its application for low-temperature interconnection. J. Nanopart. Res. 12, 2135–2144 (2010)CrossRefGoogle Scholar
  45. 45.
    F.A. Fiedler, G.H. Reynolds, Legal problems of nanotechnology:an overview. South. Calif. Interdisc. Law. J. 3, 593–629 (1994)Google Scholar
  46. 46.
    D. Lu, Q.K. Tong, C.P. Wong, A study of lubricants on silver flakes for microelectronics conductive adhesives. IEEE Trans. Compon. Packag. Technol. 22, 365–371 (1999)CrossRefGoogle Scholar
  47. 47.
    H. Zhang, Y. Gao, J. Jiu, K. Suganuma, In situ bridging effect of Ag O on pressureless and low-temperature sintering of micron-scale silver paste. J. Alloys Compd. 696, 123–129 (2017)CrossRefGoogle Scholar
  48. 48.
    US 20040245648 11 Members in Patent Family, 17, (Global Dossier USPTO, 2017), https://globaldossier.uspto.gov/#/result/publication/US/20040245648/1142. Accessed on 30 Oct 2017
  49. 49.
    S. Ghosal, R. Pandher, O. Khaselev, R. Bhatkal, R. Raut, B. Singh, M. Ribas, S. Sarkar, S. Mukherjee, S. Kumar, R. Chandran, P. Vishwanath, A. Pachamuthu, M. Boureghda, N. Desai, A. Lifton, N.K. Chaki, Sintering powder (US20150353804, 2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of LawUniversity of TurinTorinoItaly
  2. 2.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations