Morphological Changes in Sintered Silver Due to Atomic Migration

  • S. MannanEmail author
  • A. Paknejad
  • A. Mansourian
  • K. Khtatba


This chapter reviews the diffusion mechanisms that are present in sintered silver (Ag) and how these mechanisms contribute to limiting the high-temperature stability of the material at temperatures above 200 °C. Particular aspects that are of interest include the effects of porosity and electromigration. The presence of pores results in a high internal surface area which allows surface diffusion to take place. Grain boundaries also facilitate fast diffusion and are responsible for rapid diffusion between sintered Ag and metallisations such as gold. The electromigration effect occurs when high current densities are present, leading to the electron wind force causing mass transport of Ag, creating voids and nanorods.


Sintered silver (Ag) High-temperature electronics Atomic diffusion Electromigration 


  1. 1.
    S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017)CrossRefGoogle Scholar
  2. 2.
    K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947 (2014)CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, S. Nagao, T. Sugahara, E. Yokoi, H. Zhang, J. Jiu, Silver sinter joining and stress migration bonding for WBG die-attach, in International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM), 2016Google Scholar
  4. 4.
    K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. J. Alloys Compd. 514, 6–19 (2012)CrossRefGoogle Scholar
  5. 5.
    K.S. Siow, Y.T. Lin, Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 138(2), 020804 (2016)CrossRefGoogle Scholar
  6. 6.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metallogr. Mater. Trans. B. 41, 824 (2010)CrossRefGoogle Scholar
  7. 7.
    A.A. Bajwa, Y. Qin, R. Reiner, R. Quay, J. Wilde, Assembly and packaging technologies for higherature and high-power GaN devices. IEEE Trans. Compon. Packag. Manuf. Technol. 5(10), 7243341, 1402–1416 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43(7), 2459–2466 (2014)CrossRefGoogle Scholar
  9. 9.
    V.R. Manikam, K.A. Razak, K.Y. Cheong, Sintering of silver-aluminum nanopaste with varying aluminum weight percent for use as a high-temperature die-attach material. IEEE Trans. Compon. Packag. Manuf. Technol. 2(12), 6334434, 1940–1948 (2012)CrossRefGoogle Scholar
  10. 10.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, Microstructure evolution during 300 °C storage of sintered Ag, nanoparticles on Ag and Au substrates. J. Alloys Compd. 617, 994–1001 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Li, H. Jing, Y. Han, L. Xu, G. Lu, Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering. J. Electron. Mater. 45(6), 3003–3012 (2016)CrossRefGoogle Scholar
  12. 12.
    S.T. Chua, K.S. Siow, A. Jalar, Effect of sintering atmosphere on the shear properties of pressureless sintered silver joint, in Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 2015-June, 7123119Google Scholar
  13. 13.
    J. Carr, X. Milhet, P. Gadaud, S.A.E. Boyer, G.E. Thompson, P. Lee, Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints. J. Mater. Process. Technol. 225, 19–23 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Rmili, N. Vivet, S. Chupin, T. Le Bihan, G. Le Quilliec, C. Richard, Quantitative analysis of porosity and transport properties by FIB-SEM 3D imaging of a solder based sintered silver for a new microelectronic component. J. Electron. Mater. 45(4), 2242–2251 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Gillman, M.J.G.H. Roelofs, K. Matouš, V.G. Kouznetsova, O. van der Sluis, M.P.F.H.L. van Maris, Microstructure statistics–property relations of silver particle-based interconnects. Mater. Des. 118, 304–313 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Antczak, G. Ehrlich, Surface Diffusion: Metals, Metal Atoms, and Clusters (Cambridge University Press, Cambridge/New York/Melbourne, 2010), p. 347CrossRefGoogle Scholar
  17. 17.
    F. Jaumot, A. Sawatzky, Diffusion of gold in single crystals of silver. J. Appl. Phys. 27(10), 1186–1188 (1956)CrossRefGoogle Scholar
  18. 18.
    S. Wang, M. Li, H. Ji, C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scr. Mater. 69(11–12), 789–792 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Chen, Y.-Z. Wang, Y. Mei, L. Yu, X. Li, X. Chen, Influence of temperature and microstructure on the mechanical properties of sintered nanosilver joints. Mater. Sci. Eng. A. 626, 390–399 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Tominaga, The application of silver oxide thin films to plasmon photonic devices. J. Phys. Condens. Matter. 15(25), R1101–R1122 (2003)CrossRefGoogle Scholar
  21. 21.
    T. Morita, Y. Yasuda, E. Ide, Y. Akada, A. Hirose, Bonding technique using microscaled silver-oxide particles for in-situ formation of silver nanoparticles. Mater. Trans. 49, 2875–2880 (2008)CrossRefGoogle Scholar
  22. 22.
    S.A. Paknejad, A. Mansourian, J. Greenberg, K. Khtatba, L. Van Parijs, S.H. Mannan, Microstructural evolution of sintered silver at elevated temperatures. Microelectron. Reliab. 63, 125–133 (2016)CrossRefGoogle Scholar
  23. 23.
    E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edn. (Cambridge University Press, New York, 1997). ISBN 0-521-45078-0Google Scholar
  24. 24.
    S.T. Chua, K.S. Siow, Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J. Alloys Compd. 687, 486–498 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Yu, R.W. Johnson, M.C. Hamilton, Pressureless sintering of microscale silver paste for 300 °C applications. IEEE Trans. Compon. Packag. Manuf. Technol. 5(9), 7180312, 1258–1264 (2015)CrossRefGoogle Scholar
  26. 26.
    S.A. Paknejad, A. Mansourian, Y. Noh, K. Khtatba, S.H. Mannan, Thermally stable high temperature die attach solution. Mater. Des. 89, 1310–1314 (2016)CrossRefGoogle Scholar
  27. 27.
    Cher Ming Tan, Arijit Roy, Electromigration in ULSI interconnects. Materials Science and Engineering: R: Reports 58(1–2), 1–75 (2007)CrossRefGoogle Scholar
  28. 28.
    X. Zhu, H. Kotadia, S. Xu, H. Lu, S.H. Mannan, C. Bailey, Y.C. Chan, Electromigration in Sn-Ag solder thin films under high current density. Thin Solid Films. 565, 193–201 (2014)CrossRefGoogle Scholar
  29. 29.
    Ali Mansourian, Seyed Amir Paknejad, Qiannan Wen, Gema Vizcay-Barrena, Roland A. Fleck, Anatoly V. Zayats, Samjid H. Mannan, Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration. Scientific Reports 6, (22272) (2016)Google Scholar
  30. 30.
    J.N. Calata, G.Q. Lu, K. Ngo, L. Nguyen, Electromigration in sintered nanoscale silver films at elevated temperature. J. Electron. Mater. 43, 109–116 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. Mannan
    • 1
    Email author
  • A. Paknejad
    • 1
  • A. Mansourian
    • 1
  • K. Khtatba
    • 1
  1. 1.Department of PhysicsKing’s College LondonLondonUK

Personalised recommendations