Reliability and Failure Mechanisms of Sintered Silver as Die Attach Joint

  • Y. H. MeiEmail author
  • Z. Wang
  • K. S. Siow


This chapter reviews the reliability of sintered Ag joint in terms of elastic modulus, shear strength, tensile strength, creep strength, fatigue strength, and related failure mechanisms under normal and accelerated conditions, as well as failure mechanism like electrochemical migration. While it is technically feasible to produce sintered Ag joint to meet the package design requirement, its long-term reliability is a subject of continuous research and development. Sufficient densification and microstructure stability (grain boundary and interfacial metallization quality) of the sintered Ag joints form the critical strategies in producing a reliable joint. With a better understanding of the failure mechanisms and contributing factors described in this chapter, modifications in Ag paste formulation, sintering conditions, interfacial metallization, and innovative package designs will be able to alleviate these issues to improve the community’s confidence in this bonding technique.


Power cycling Thermal cycling Thermal aging Electrochemical migration (ECM) Elastic modulus Shear strength Dwell time Creep Fatigue strength Ratcheting 



SKS acknowledges Universiti Kebangsaan Malaysia Research Grants (GUP-2017-055 “Production of Metallic Conducting Nanowires for Industrial Applications”) for this work.


  1. 1.
    O.A. Ogunseitan, Public health and environmental benefits of adopting lead-free solders. JOM 59, 12 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, et al., State of the art of high temperature power electronics. Mater. Sci. Eng. B 176, 283–288 (2011)CrossRefGoogle Scholar
  3. 3.
    J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Khazaka, L. Mendizabal, D. Henry, R. Hanna, Survey of high-temperature reliability of power electronics packaging components. IEEE Trans. Power Electron. 30, 2456–2464 (2015)CrossRefGoogle Scholar
  5. 5.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 41, 824–832 (2010)CrossRefGoogle Scholar
  6. 6.
    G. Zeng, S. Mcdonald, K. Nogita, Development of high-temperature solders: Review. Microelectron. Reliab. 52, 1306–1322 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud et al., Die attach of power devices using silver sintering – bonding process optimisation and characterization, in Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2011, pp. 000084–000090CrossRefGoogle Scholar
  8. 8.
    S.-Y. Zhao, X. Li, Y.-H. Mei, G.-Q. Lu, Effect of silver flakes in silver paste on the joining process and properties of sandwich power modules (IGBTs chip/silver paste/bare Cu). J. Electron. Mater. 45, 5789–5799 (2016)CrossRefGoogle Scholar
  9. 9.
    F.L. Henaff, S. Azzopardi, J.Y. Deletage, E. Woirgard, S. Bontemps, J. Joguet, A preliminary study on the thermal and mechanical performances of sintered nano-scale silver die-attach technology depending on the substrate metallization. Microelectron. Reliab. 52, 2321–2325 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Schwarzbauer, R. Kuhnert, Novel large area joining technique for improved power device performance, in Conference Record of the IEEE Industry Applications Society Annual Meeting, vol. 2, 1989, pp. 1348–1351Google Scholar
  11. 11.
    C. Herring, Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301–303 (1950)CrossRefGoogle Scholar
  12. 12.
    J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29, 589–593 (2006)CrossRefGoogle Scholar
  13. 13.
    F.L. Henaff, S. Azzopardi, E. Woirgard, T. Youssef, S. Bontemps, J. Joguet, Lifetime evaluation of nanoscale silver sintered power modules for automotive application based on experiments and finite-element modeling. IEEE Trans. Device Mater. Reliab. 15, 326–334 (2015)CrossRefGoogle Scholar
  14. 14.
    K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. J. Alloys Compd. 514, 6–19 (2012)CrossRefGoogle Scholar
  15. 15.
    X. Milhet, P. Gadaud, V. Caccuri, D. Bertheau, D. Mellier, M. Gerland, Influence of the porous microstructure on the elastic properties of sintered Ag paste as replacement material for die attachment. J. Electron. Mater. 44, 3948–3956 (2015)CrossRefGoogle Scholar
  16. 16.
    V.A. Levin, V.V. Lokhin, K.M. Zingerman, Effective elastic properties of porous materials with randomly dispersed pores: finite deformation. J. Appl. Mech. 67, 667–670 (2000)CrossRefGoogle Scholar
  17. 17.
    Y. Kariya, H. Yamaguchi, M. Itako, N. Mizumura, K. Sasaki, Mechanical behavior of sintered nano-sized Ag particles. J. Smart Process. 2, 160–165 (2013)CrossRefGoogle Scholar
  18. 18.
    V. Caccuri, X. Milhet, P. Gadaud, D. Bertheau, M. Gerland, Mechanical properties of sintered Ag as a new material for die bonding: influence of the density. J. Electron. Mater. 43, 4510–4514 (2014)CrossRefGoogle Scholar
  19. 19.
    N. Ramakrishnan, V.S. Arunachalam, Effective elastic moduli of porous solids. J. Mater. Sci. 25, 3930–3937 (1990)CrossRefGoogle Scholar
  20. 20.
    J. Kähler, N. Heuck, G. Palm, A. Stranz, A. Waag, E. Peiner, Low-pressure sintering of silver micro-and nanoparticles for a high temperature stable Pick & Place die attach, in Microelectronics and Packaging Conference (EMPC), 2011 18th European: IEEE, 2011, pp. 1–7Google Scholar
  21. 21.
    D.J. Yu, X. Chen, G. Chen, G.Q. Lu, Z.Q. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment. Mater. Des. 30, 4574–4579 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44, 1141–1158 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Knoerr, S. Kraft, A. Schletz, Reliability assessment of sintered nano-silver die attachment for power semiconductors, in 2010 12th Electronics Packaging Technology Conference, 2010, pp. 56–61Google Scholar
  24. 24.
    Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide, Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater. Trans. 49, 1537–1545 (2008)CrossRefGoogle Scholar
  25. 25.
    C. Weber, H. Walter, M.V. Dijk, M. Hutter, O. Wittler, K.D. Lang, Combination of experimental and simulation methods for analysis of sintered Ag joints for high temperature applications, in 2016 I.E. 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 1335–1341Google Scholar
  26. 26.
    H. Zheng, D. Berry, J.N. Calata, K.D.T. Ngo, S. Luo, G.Q. Lu, Low-pressure joining of large-area devices on copper using nanosilver paste. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 915–922 (2013)CrossRefGoogle Scholar
  27. 27.
    T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (>100 mm2) chips. IEEE Trans. Compon. Packag. Technol. 33, 98–104 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Khazaka, L. Mendizabal, D. Henry, Review on joint shear strength of nano-silver paste and its long-term high temperature reliability. J. Electron. Mater. 43, 2459–2466 (2014)CrossRefGoogle Scholar
  29. 29.
    Z. Zhang, L. Guo-Quan, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25, 279–283 (2002)CrossRefGoogle Scholar
  30. 30.
    T. Wang, X. Chen, G.-Q. Lu, G.-Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)CrossRefGoogle Scholar
  31. 31.
    G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, et al., Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. Open Surf. Sci. J. 3, 70–75 (2011)CrossRefGoogle Scholar
  32. 32.
    M.Y. Wang, Y.H. Mei, X. Li, G.Q. Lu, Relationship between transient thermal impedance and shear strength of pressureless sintered silver as die attachment for power devices, in 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), 2015, pp. 559–564Google Scholar
  33. 33.
    J.G. Bai, G.Q. Lu, Thermomechanical reliability of low-temperature sintered silver die attached SiC power device assembly. IEEE Trans. Device Mater. Reliab. 6, 436–441 (2006)CrossRefGoogle Scholar
  34. 34.
    K.S. Siow, Y.T. Lin, Identifying the development state of sintered Ag as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 138, 020804 (2016)CrossRefGoogle Scholar
  35. 35.
    S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017)CrossRefGoogle Scholar
  36. 36.
    K. Qi, X. Chen, G.Q. Lu, Effect of interconnection area on shear strength of sintered joint with nano-silver paste. Soldering Surf. Mount Technol. 20, 8–12 (2008)CrossRefGoogle Scholar
  37. 37.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Bonding of various metals using Ag metallo-organic nanoparticles: a novel bonding process using Ag metallo-organic nanoparticles. Mater. Sci. Forum 512, 383–388 (2006)CrossRefGoogle Scholar
  38. 38.
    B. Boettge, B. Maerz, J. Schischka, S. Klengel, M. Petzold, High resolution failure analysis of silver-sintered contact interfaces for power electronics, in CIPS 2014; 8th International Conference on Integrated Power Electronics Systems, 2014, pp. 1–7Google Scholar
  39. 39.
    Y. Tan, X. Li, G. Chen, Y. Mei, X. Chen, Three-dimensional visualization of the crack-growth behavior of nano-silver joints during shear creep. J. Electron. Mater. 44, 761–769 (2015)CrossRefGoogle Scholar
  40. 40.
    R. Shioda, Y. Kariya, N. Mizumura, K. Sasaki, Low-cycle fatigue life and fatigue crack propagation of sintered Ag nanoparticles. J. Electron. Mater. 46, 1155–1162 (2017)CrossRefGoogle Scholar
  41. 41.
    T. Herboth, M. Guenther, A. Fix, J. Wilde, Failure mechanisms of sintered silver interconnections for power electronic applications, in 2013 I.E. 63rd Electronic Components and Technology Conference, 2013, pp. 1621–1627Google Scholar
  42. 42.
    J.G. Bai, J.N. Calata, L. Guangyin, L. Guo-Quan, Thermomechanical reliability of low-temperature sintered silver die-attachment, in Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006 ITherm 2006, 2006, pp. 1126–1130Google Scholar
  43. 43.
    G. Chen, X.-H. Sun, P. Nie, Y.-H. Mei, G.-Q. Lu, X. Chen, High-temperature creep behavior of low-temperature-sintered nano-silver paste films. J. Electron. Mater. 41, 782–790 (2012)CrossRefGoogle Scholar
  44. 44.
    X. Li, G. Chen, L. Wang, Y.-H. Mei, X. Chen, G.-Q. Lu, Creep properties of low-temperature sintered nano-silver lap shear joints. Mater. Sci. Eng. A 579, 108–113 (2013)CrossRefGoogle Scholar
  45. 45.
    Y. Tan, X. Li, Y. Mei, G. Chen, X. Chen, Temperature-dependent dwell-fatigue behavior of nanosilver sintered lap shear joint. J. Electron. Packag. 138, 021001–021008 (2016)CrossRefGoogle Scholar
  46. 46.
    C. Kanchanomai, Y. Miyashita, Y. Mutoh, Low cycle fatigue behavior and mechanisms of a eutectic Sn–Pb solder 63Sn/37Pb. Int. J. Fatigue 24, 671–683 (2002)CrossRefGoogle Scholar
  47. 47.
    Y. Tan, X. Li, X. Chen, Fatigue and dwell-fatigue behavior of nano-silver sintered lap-shear joint at elevated temperature. Microelectron. Reliab. 54, 648–653 (2014)CrossRefGoogle Scholar
  48. 48.
    G. Chen, L. Yu, Y. Mei, X. Li, X. Chen, G.-Q. Lu, Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging. Mater. Sci. Eng. A 591, 121–129 (2014)CrossRefGoogle Scholar
  49. 49.
    J. Ma, H. Gao, L. Gao, X. Chen, Uniaxial ratcheting behavior of anisotropic conductive adhesive film at elevated temperature. Polym. Test. 30, 571–577 (2011)CrossRefGoogle Scholar
  50. 50.
    M. Shariati, H. Hatami, H. Yarahmadi, H.R. Eipakchi, An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading. Mater. Des. 34, 302–312 (2012)CrossRefGoogle Scholar
  51. 51.
    T. Wang, G. Chen, Y. Wang, X. Chen, G.-Q. Lu, Uniaxial ratcheting and fatigue behaviors of low-temperature sintered nano-scale silver paste at room and high temperatures. Mater. Sci. Eng. A 527, 6714–6722 (2010)CrossRefGoogle Scholar
  52. 52.
    X. Li, G. Chen, X. Chen, G.-Q. Lu, L. Wang, Y.-H. Mei, High temperature ratcheting behavior of nano-silver paste sintered lap shear joint under cyclic shear force. Microelectron. Reliab. 53, 174–181 (2013)CrossRefGoogle Scholar
  53. 53.
    G. Chen, Z.-S. Zhang, Y.-H. Mei, X. Li, D.-J. Yu, L. Wang, et al., Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater. 72, 61–71 (2014)CrossRefGoogle Scholar
  54. 54.
    G. Chen, Z.-S. Zhang, Y.-H. Mei, X. Li, G.-Q. Lu, X. Chen, Ratcheting behavior of sandwiched assembly joined by sintered nanosilver for power electronics packaging. Microelectron. Reliab. 53, 645–651 (2013)CrossRefGoogle Scholar
  55. 55.
    X. Chen, R. Li, K. Qi, G.-Q. Lu, Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste. J. Electron. Mater. 37, 1574 (2008)CrossRefGoogle Scholar
  56. 56.
    G. Chen, L. Yu, Y.-H. Mei, X. Li, X. Chen, G.-Q. Lu, Reliability comparison between SAC305 joint and sintered nanosilver joint at high temperatures for power electronic packaging. J. Mater. Process. Technol. 214, 1900–1908 (2014)CrossRefGoogle Scholar
  57. 57.
    S.T. Chua, K.S. Siow, Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J. Alloys Compd. 687, 486–498 (2016)CrossRefGoogle Scholar
  58. 58.
    S. Chen, G. Fan, X. Yan, C. LaBarbera, L. Kresge, N.C. Lee, Achieving high reliability via pressureless sintering of nano-Ag paste for die-attach, in 2015 16th International Conference on Electronic Packaging Technology (ICEPT), 2015, pp. 367–374Google Scholar
  59. 59.
    S.-Y. Zhao, X. Li, Y.-H. Mei, G.-Q. Lu, Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron. Reliab. 55, 2524–2531 (2015)CrossRefGoogle Scholar
  60. 60.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates. J. Alloys Compd. 617, 994–1001 (2014)CrossRefGoogle Scholar
  61. 61.
    K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014)CrossRefGoogle Scholar
  62. 62.
    S. Egelkraut, L. Frey, M. Knoerr, A. Schletz, Evolution of shear strength and microstructure of die bonding technologies for high temperature applications during thermal aging, in 2010 12th Electronics Packaging Technology Conference, 2010, pp. 660–667Google Scholar
  63. 63.
    R. Kisiel, Z. Szczepański, P. Firek, J. Grochowski, M. Myśliwiec, M. Guziewicz, Silver micropowders as SiC die attach material for high temperature applications, in 2012 35th International Spring Seminar on Electronics Technology, 2012, pp. 144–148Google Scholar
  64. 64.
    G.Q. Lu, M. Zhao, G. Lei, J.N. Calata, X. Chen, S. Luo, Emerging lead-free, high-temperature die-attach technology enabled by low-temperature sintering of nanoscale silver pastes, in 2009 International Conference on Electronic Packaging Technology & High Density Packaging, 2009, pp. 461–466Google Scholar
  65. 65.
    Y.H. Mei, J.Y. Lian, X. Chen, G. Chen, X. Li, G.Q. Lu, Thermo-mechanical reliability of double-sided IGBT assembly bonded by sintered nanosilver. IEEE Trans. Device Mater. Reliab. 14, 194–202 (2014)CrossRefGoogle Scholar
  66. 66.
    H. Zheng, K.D.T. Ngo, G.Q. Lu, Temperature cycling reliability assessment of die attachment on bare copper by pressureless nanosilver sintering. IEEE Trans. Device Mater. Reliab. 15, 214–219 (2015)CrossRefGoogle Scholar
  67. 67.
    S. Sakamoto, T. Sugahara, K. Suganuma, Microstructural stability of Ag sinter joining in thermal cycling. J. Mater. Sci. Mater. Electron. 24, 1332–1340 (2013)CrossRefGoogle Scholar
  68. 68.
    F. Shancan, X. Yijing, M. Yunhui, Reliability of pressureless sintered nanosilver for attaching IGBT devices, in 2016 International Conference on Electronics Packaging (ICEP), 2016, pp. 382–385Google Scholar
  69. 69.
    T. Herboth, C. Früh, M. Günther, J. Wilde, Assessment of thermo-mechanical stresses in Low Temperature Joining Technology, in 2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2012, pp. 1/7–7/7Google Scholar
  70. 70.
    D. Agata Skwarek, R. Dudek, P. Sommer, A. Fix, J. Trodler, S. Rzepka, et al., Reliability investigations for high temperature interconnects. Soldering Surf. Mount Technol. 26, 27–36 (2014)CrossRefGoogle Scholar
  71. 71.
    P. Rajaguru, H. Lu, C. Bailey, Sintered silver finite element modelling and reliability based design optimisation in power electronic module. Microelectron. Reliab. 55, 919–930 (2015)CrossRefGoogle Scholar
  72. 72.
    Y. Mei, G. Chen, X. Li, G.-Q. Lu, X. Chen, Evolution of curvature under thermal cycling in sandwich assembly bonded by sintered nanosilver paste. Soldering Surf. Mount Technol. 25, 107–116 (2013)CrossRefGoogle Scholar
  73. 73.
    Y. Mei, G. Chen, L. Guo-Quan, X. Chen, Effect of joint sizes of low-temperature sintered nano-silver on thermal residual curvature of sandwiched assembly. Int. J. Adhes. Adhes. 35, 88–93 (2012)CrossRefGoogle Scholar
  74. 74.
    R. Dudek, R. Döring, P. Sommer, B. Seiler, K. Kreyssig, H. Walter et al., Combined experimental- and FE-studies on sinter-Ag behaviour and effects on IGBT-module reliability, in 2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2014, pp. 1–9Google Scholar
  75. 75.
    Q. Xu, Y. Mei, X. Li, G.-Q. Lu, Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J. Alloys Compd. 675, 317–324 (2016)CrossRefGoogle Scholar
  76. 76.
    T.Y. Hung, S.Y. Chiang, C.J. Huang, C.C. Lee, K.N. Chiang, Thermal–mechanical behavior of the bonding wire for a power module subjected to the power cycling test. Microelectron. Reliab. 51, 1819–1823 (2011)CrossRefGoogle Scholar
  77. 77.
    A.A. Bajwa, E. Möller, J. Wilde, Die-attachment technologies for high-temperature applications of Si and SiC-based power devices, in 2015 I.E. 65th Electronic Components and Technology Conference (ECTC), 2015, pp. 2168–2174Google Scholar
  78. 78.
    C. Weber, M. Hutter, S. Schmitz, K.D. Lang, Dependency of the porosity and the layer thickness on the reliability of Ag sintered joints during active power cycling, in 2015 I.E. 65th Electronic Components and Technology Conference (ECTC), 2015, pp. 1866–1873Google Scholar
  79. 79.
    S. Haumann, J. Rudzki, F. Osterwald, M. Becker, R. Eisele, Novel bonding and joining technology for power electronics - Enabler for improved lifetime, reliability, cost and power density, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 622–626Google Scholar
  80. 80.
    N. Heuck, K. Guth, M. Thoben, A. Mueller, N. Oeschler, L. Boewer et al., Aging of new Interconnect-Technologies of Power-Modules during Power-Cycling, in CIPS 2014; 8th International Conference on Integrated Power Electronics Systems, 2014, pp. 1–6Google Scholar
  81. 81.
    S. Fu, Y. Mei, X. Li, C. Ma, G.Q. Lu, Reliability evaluation of multichip phase-leg IGBT modules using pressureless sintering of nanosilver paste by power cycling tests. IEEE Trans. Power Electron. 32, 6049–6058 (2017)CrossRefGoogle Scholar
  82. 82.
    R. Amro, J. Lutz, J. Rudzki, M. Thoben, A. Lindemann, Double-sided low-temperature joining technique for power cycling capability at high temperature, in 2005 European Conference on Power Electronics and Applications, 2005, p. 10Google Scholar
  83. 83.
    R. Amro, J. Lutz, J. Rudzki, R. Sittig, M. Thoben, Power cycling at high temperature swings of modules with low temperature joining technique, in 2006 I.E. International Symposium on Power Semiconductor Devices and IC’s, 2006, pp. 1–4Google Scholar
  84. 84.
    R. Dudek, R. Döring, S. Rzepka, C. Ehrhardt, M. Günther, M. Haag, Electro-thermo-mechanical analyses on silver sintered IGBT-module reliability in power cycling, in 2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2015, pp. 1–8Google Scholar
  85. 85.
    R. Dudek, R. Döring, S. Rzepka, C. Ehrhardt, M. Hutter, J. Rudzki et al., Investigations on power cycling induced fatigue failure of IGBTs with silver sintered interconnects, in 2015 European Microelectronics Packaging Conference (EMPC), 2015, pp. 1–8Google Scholar
  86. 86.
    B.-I. Noh, J.-W. Yoon, K.-S. Kim, S. Kang, S.-B. Jung, Electrochemical migration of directly printed Ag electrodes using Ag paste with epoxy binder. Microelectron. Eng. 103, 1–6 (2013)CrossRefGoogle Scholar
  87. 87.
    B.-I. Noh, J.-W. Yoon, W.-S. Hong, S.-B. Jung, Evaluation of electrochemical migration on flexible printed circuit boards with different surface finishes. J. Electron. Mater. 38, 902–907 (2009)CrossRefGoogle Scholar
  88. 88.
    J. Steppan, J. Roth, L. Hall, D. Jeannotte, S. Carbone, A review of corrosion failure mechanisms during accelerated tests electrolytic metal migration. J. Electrochem. Soc. 134, 175–190 (1987)CrossRefGoogle Scholar
  89. 89.
    G.Q. Lu, W. Yang, Y. Mei, X. Li, G. Chen, X. Chen, Effects of DC bias and spacing on migration of sintered nanosilver at high temperatures for power electronic packaging, in 2013 14th International Conference on Electronic Packaging Technology, 2013, pp. 925–930Google Scholar
  90. 90.
    G.Q. Lu, W. Yang, Y.H. Mei, X. Li, G. Chen, X. Chen, Migration of sintered nanosilver on alumina and aluminum nitride substrates at high temperatures in dry air for electronic packaging. IEEE Trans. Device Mater. Reliab. 14, 600–606 (2014)CrossRefGoogle Scholar
  91. 91.
    C.-H. Tsou, K.-N. Liu, H.-T. Lin, F.-Y. Ouyang, Electrochemical migration of fine-pitch nanopaste Ag interconnects. J. Electron. Mater. 45, 6123–6129 (2016)CrossRefGoogle Scholar
  92. 92.
    Y. Mei, G.Q. Lu, X. Chen, S. Luo, D. Ibitayo, Effect of oxygen partial pressure on silver migration of low-temperature sintered nanosilver die-attach material. IEEE Trans. Device Mater. Reliab. 11, 312–315 (2011)CrossRefGoogle Scholar
  93. 93.
    R. Riva, C. Buttay, B. Allard, P. Bevilacqua, Migration issues in sintered-silver die attaches operating at high temperature. Microelectron. Reliab. 53, 1592–1596 (2013)CrossRefGoogle Scholar
  94. 94.
    G.Q. Lu, W. Yang, Y.H. Mei, X. Li, G. Chen, X. Chen, Mechanism of migration of sintered nanosilver at high temperatures in dry air for electronic packaging. IEEE Trans. Device Mater. Reliab. 14, 311–317 (2014)CrossRefGoogle Scholar
  95. 95.
    J.C. Lin, J.Y. Chan, On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field. Mater. Chem. Phys. 43, 256–265 (1996)CrossRefGoogle Scholar
  96. 96.
    J.C. Lin, J.Y. Chuang, Resistance to silver electrolytic migration for thick-film conductors prepared from mixed and alloyed powders of Ag-15Pd and Ag-30Pd. J. Electrochem. Soc. 144, 1652–1659 (1997)CrossRefGoogle Scholar
  97. 97.
    D. Wang, Y. Mei, K.S. Siow, X. Li, G. Lu, Roles of palladium particles in enhancing the electrochemical migration resistance of sintered nano-silver paste as a bonding material. Mater. Lett. 206, 1–4 (2017)CrossRefGoogle Scholar
  98. 98.
    T. Ito, T. Ogura, A. Hirose, Effects of Au and Pd additions on joint strength, electrical resistivity, and ion-migration tolerance in low-temperature sintering bonding using Ag2O paste. J. Electron. Mater. 41, 2573–2579 (2012)CrossRefGoogle Scholar
  99. 99.
    M. Koh, K.-S. Kim, B.-G. Park, K.-H. Jung, C.S. Lee, Y.-H. Choa, et al., Electrical and electrochemical migration characteristics of Ag/Cu nanopaste patterns. J. Nanosci. Nanotechnol. 14, 8915–8919 (2014)CrossRefGoogle Scholar
  100. 100.
    N. Heuck, A. Langer, A. Stranz, G. Palm, R. Sittig, A. Bakin, et al., Analysis and modeling of thermomechanically improved silver-sintered die-attach layers modified by additives. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1846–1855 (2011)CrossRefGoogle Scholar
  101. 101.
    H. Sugihara, M. Yamagiwa, M. Fujita, T. Oshidari, Q. Yu, Thermal fatigue reliability of high-temperature-resistant joint for power devices, in ASME 2009 InterPACK Conference, 2009, pp. 937–943Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Advanced Joining Technology & Center of High-Temperature Electronic Packaging, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory of Advanced Ceramics and Machining TechnologyMinistry of EducationTianjinChina
  3. 3.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations