Process Control of Sintered Ag Joint in Production for Die Attach Applications

  • K. S. SiowEmail author
  • V. R. Manikam
  • S. T. Chua


This chapter reviews the main process steps and equipment in producing sintered Ag joints as die attach joint, associated process control, and related tools to enable this control and reliability tests. The primary process steps of sintered Ag joints are substrate/wafer printing, preheating, die laminating, placement, and pressure sintering. Unlike solder joint, sintered Ag joint does not form intermetallic with the common substrates used in the die attach joints nor resolidify upon joint formation. In spite of these differences, the process control of the sintered Ag joints is quite similar to the traditional epoxy adhesives and solder die attach, as the former also uses tools such as SEM, optical microscopy, die shear tester, etc., to measure the porosity and fillet heights, die placement, rotation, and tilt as well as bond strength. However, the die placement and pressure-sintering steps require additional care because of the absence of self-alignment and ability to rework in a solid-state sintering process. In addition, the measurement of nano-sized porosity and voids is also crucial to control properties of the sintered Ag joint, such as density, thermal conductivity, and thermal-mechanical stresses. These pore structures also depend on the different processing steps and materials formulation used in the manufacturing process. Other failure analysis tools like DSC-TGA, TMA, TEM, TOF-SIMS, C-SAM, thermography, X-ray radiography, thermal impedance analysis, and FEA modeling are also introduced here within the context of manufacturing the sintered Ag joint en masse.


Sintered silver (Ag) Pressureless sintering Pressure sintering High-temperature die attach Power semiconductors 



We greatly acknowledge the feedback and support from Marco Koelink (Boschman Technologies BV), Giulio Locatelli (Locatelli Meccanica S.r.l.), Eric Kuah (ASM Technology) colleagues, managers, and friends involved in bringing this sintered Ag technology to the mainstream market. KSS also acknowledges Universiti Kebangsaan Malaysia Research Grants (GUP-2017-055 “Production of Metallic Conducting Nanowires for Industrial Applications”) for this work.


  1. 1.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 41, 824–832 (2010)CrossRefGoogle Scholar
  2. 2.
    V.R. Manikam, C. Kuan Yew, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457–478 (2011)CrossRefGoogle Scholar
  3. 3.
    B.J. Baliga, IEEE Electron Device Lett. 10, 455–457 (1989)CrossRefGoogle Scholar
  4. 4.
    Infineon, Die Attach -5 Project (2018), Accessed 22 Feb 2018
  5. 5.
    K.S. Siow, Y.T. Lin, J. Electron. Packag. 138, 020804-1–020804-13 (2016)Google Scholar
  6. 6.
    K.S. Siow, M. Eugénie, in 2016 I.E. 37th International Electronic Manufacturing Technology (IEMT) & 18th Electronics Materials and Packaging (EMAP) Conference, 2016. pp. 1–6Google Scholar
  7. 7.
    K.S. Siow, J. Electron. Mater. 43, 947–961 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Yu, J. Cui, Z. Zhou, K. Fang, R. Johnson, M. Hamilton, IEEE Trans. Power Electron. 32, 7083–7095 (2017)CrossRefGoogle Scholar
  9. 9.
    S.T. Chua, K.S. Siow, J. Alloys Compd. 687, 486–498 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Knoerr, S. Kraft, A. Schletz, 12th IEEE Electronics Packaging Technology Conference, Singapore, 2010. pp. 56–61Google Scholar
  11. 11.
    V.A. Ivensen, Densification of metal powders during sintering, Consultants Bureau, 1973Google Scholar
  12. 12.
    J.K. Mackenzie, R. Shuttleworth, Proc. Phys. Soc. Sect. B 62, 833 (1949)CrossRefGoogle Scholar
  13. 13.
    M.B.G. Koelink (Boschman Technologies), Private Communication, 2017Google Scholar
  14. 14.
    T. Wang, M. Zhao, X. Chen, G.Q. Lu, K. Ngo, S. Luo, J. Electron. Mater. 41, 2543–2552 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Ng, K. Kumagai, K. Sweatman, T. Nishimura, 17th IEEE Electronics Packaging and Technology Conference, Singapore, 2015, pp 1–6Google Scholar
  16. 16.
    H. Mutoh, N. Moriyama, K. Kaneko, Y. Miyazawa, H. Kida, in IOP Conference Series: Materials Science and Engineering, Vol. 61, Institute of Physics Publishing, 2014Google Scholar
  17. 17.
    E.N. Kablov, V.I. Lukin, N V S. Ryl, A.F. Cherkasov, E.K.A.N. Afanas, Method of drying coating of silver-coating paste, Federal Noe Gup Vrnii Aviat Materialov Fgup Viam, RU2564518, 2014Google Scholar
  18. 18.
    O. Khaselev, E. Boschman, Method for die and chip attachment, Alpha Assembly & Adv Packaging Ctr B.V., WO2016100470, 2016Google Scholar
  19. 19.
  20. 20.
    R. Bayerer, O. Hohlfield, Method for producing a composite and a power semiconductor module, Infineon Tech, US20130203218A1, 2012Google Scholar
  21. 21.
    W. Knapp, Method for mounting electronic components on substrates, ABB Res. US6935556B2, 2005Google Scholar
  22. 22.
    L. Viswanathan, L.M. Mahalingam, D. Abdo, J. Molla, Packaged semiconductor devices and methods of their fabrication, Freescale Semiconductor, US9099567B1, 2015Google Scholar
  23. 23.
    H. Hauenstein, Sintering utilizing non-mechanical pressure, International Rectifier Corporation, US20140224409A1, 2014Google Scholar
  24. 24.
    L. Wang, 16th IEEE International Conference Electronic Packaging Technology, Changsha, China, 2015, pp. 1317–1320Google Scholar
  25. 25.
    Boschman, Advanced molding and sintering systems: sinterstar innovate F-XL (2016), Accessed on 9 Mar 2016
  26. 26.
    C. Gobl, J. Faltenbacher, in 6th IEEE International Conference Integrated Power Electron System, Nuremberg, 2010. p. 1Google Scholar
  27. 27.
    Y. Zhao, Y. Wu, K. Evans, J. Swingler, S. Jones, X. Dai, 15th IEEE International Conference on Electronic Packaging Technology, ed. by K. Bi, Z. Tian, Z. Xu. 2014, pp. 200–204Google Scholar
  28. 28.
    Smart Equipment Technology, FC150 Automated Die/Flip Chip Bonder (2016),
  29. 29.
    Datacon 2200 Evo plus BESI (2017), Accessed on 24 Feb 2018
  30. 30.
    S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, Microelectron. Reliab. 55, 2524–2531 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Chen, G. Fan, X. Yan, C. LaBarbera, L. Kresge, N. C. Lee, 16th IEEE International Conference on Electronic Packaging Technology, 2015, pp. 367–374Google Scholar
  32. 32.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloys Compd. 617, 994–1001 (2014)CrossRefGoogle Scholar
  33. 33.
    C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud, H. Morel, IMAPS International Conference on High Temperature Electronics Network, Oxford, 2011, pp. 84–90Google Scholar
  34. 34.
    R.Y. Agustin, J.M. Jucar, J.S. Talledo, 23rd ASEMEP National Technical Symposium 2015, pp. 1–6Google Scholar
  35. 35.
    J. Weidler, R. Newman, C. J. Zhai, 52nd IEEE Electronic Components and Technology Conference 2002. (Cat. No.02CH37345), 2002, pp. 1172–1177Google Scholar
  36. 36.
    T. Adams, Inverted Acoustic System Cuts IGBT Failures (2011),, accessed on 24 Feb 2018
  37. 37.
    G.Q. Lu, J.N. Calata, Z. Zhang, J.G. Bai, 6th IEEE Conference High Density Microsystems Design Packaging Component Failure Analysis, Shanghai, 2004, pp. 42–46Google Scholar
  38. 38.
    V. R. Manikam, S. Paing, A. Ang, 15th Electronics Packaging Technology Conference Singapore, 2013, pp. 152–155Google Scholar
  39. 39.
    S.T. Chua, K. S. Siow, A.Jalar, 36th IEEE International Electronics Manufacturing Technology, Johor Bahru, 2014. pp. 1–6Google Scholar
  40. 40.
    V.R. Manikam, E.N. Tolentino, 16th IEEE Electronics Packaging Technology Conference, Singapore, 2014, pp. 1–5Google Scholar
  41. 41.
    H. Zheng, D. Berry, K.D.T. Ngo, G.Q. Lu, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 377–384 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Mei, G.Q. Lu, X. Chen, S. Luo, D. Ibitayo, IEEE Trans. Device Mater. Reliab. 11, 312–315 (2011)CrossRefGoogle Scholar
  43. 43.
    F. Cosiansi, E. Mattiuzzo, M. Turnaturi, P.F. Candido, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016, pp. 1–5Google Scholar
  44. 44.
    Japan Electronics and Information Technology Industries Association (JEITA) Technical Standardization Center, Accessed on 24th Feb 2018
  45. 45.
    H. Ogura, M. Maruyama, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, S. Isoda, J. Electron. Mater. 39, 1233–1240 (2010)CrossRefGoogle Scholar
  46. 46.
    S. Takata, T. Ogura, E. Ide, T. Morita, A. Hirose, J. Electron. Mater. 42, 507–515 (2013)CrossRefGoogle Scholar
  47. 47.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385–2393 (2005)CrossRefGoogle Scholar
  48. 48.
    C. Fruh, M. Gunther, M. Rittner, A. Fix, M. Nowottnick, 3rd IEEE Electronic Systems Integrated Technology Conference, Berlin, 2010. pp. 1–5Google Scholar
  49. 49.
    W. Schmitt, 6th International Conference on Integrated Power Electronics Systems, 2010, pp. 1–6Google Scholar
  50. 50.
    K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C.P. Wong, J. Electron. Mater. 34, 168–175 (2005)CrossRefGoogle Scholar
  51. 51.
    J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu, 8th IEEE High Density Microsystem Design Packaging and Component Failure Analysis 2005, Shanghai, 2006Google Scholar
  52. 52.
    Y. Fang, R.W. Johnson, M.C. Hamilton, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1258–1264 (2015)CrossRefGoogle Scholar
  53. 53.
    A.A. Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, Z. Liang, Oak Ridge National Laboratory Technical Report ORNL/TM-2012/130, 2012,, Accessed on 24 Feb 2018
  54. 54.
    S. Wolfgang, T. Krebs, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016, pp. 1–7Google Scholar
  55. 55.
    S. Fu, Y. Mei, X. Li, P. Ning, G.-Q. Lu, J. Electron. Mater. 44, 3973–3984 (2015)CrossRefGoogle Scholar
  56. 56.
    K. S. Siow, 35th IEEE International Electronics Manufacturing Technology, Ipoh, 2012, pp. 1–6Google Scholar
  57. 57.
    Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Electron. Mater. 39, 1283–1288 (2010)CrossRefGoogle Scholar
  58. 58.
    M.S. Kim, H. Nishikawa, Scr. Mater. 92, 43–46 (2014)Google Scholar
  59. 59.
    B. Boettge, B. Maerz, J. Schischka, S. Klengel, M. Petzold, 8th IEEE International Conference on Integrated Power Electronics Systems, 2014, pp. 1–7Google Scholar
  60. 60.
    T. Ogura, M. Nishimura, H. Tatsumi, N. Takeda, W. Takahara, A. Hirose, Open Surf. Sci. J. 33, 55–59 (2011)Google Scholar
  61. 61.
    Z. Zhang, Processing and Characterization of Micro-scale and Nanscale Silver Paste for Power Semiconductor Device Attachment, Virginia Polytechnic Institute and State University PhD thesis, 2005Google Scholar
  62. 62.
    Z. Pešina, V. Vykoukal, M. Palcut, J. Sopoušek, Electron. Mater. Lett. 10, 293–298 (2014)CrossRefGoogle Scholar
  63. 63.
    M.A. Asoro, D. Kovar, P.J. Ferreira, Chem. Commun. 50, 4835–4838 (2014)CrossRefGoogle Scholar
  64. 64.
    M.P. Allen, Introduction to molecular dynamics simulation, in Computational Soft Matter: From Synthetic Polymers to Proteins, ed. by N. Attig, K. Binder, H. Grubmüller, K. Kremer (Eds), vol. 23, (2004), pp. 1–28Google Scholar
  65. 65.
    S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, Upper Saddle River, N.J (Pearson Education, 2008)Google Scholar
  66. 66.
    J. Lian, Y. Mei, X. Chen, X. Li, G. Chen, K. Zhou, 13th International Conference on Electronic Packaging Technology & High Density Packaging, 2012. pp. 232–237Google Scholar
  67. 67.
    J.G. Bai, J.N. Calata, G.Q. Lu, 19th IEEE Annual Applied Power Electronics Conference and Exposition, 2004, pp. 1240–1246Google Scholar
  68. 68.
    G. Chen, L. Yu, Y.H. Mei, X. Li, X. Chen, G.Q. Lu, J. Mater. Process. Technol. 214, 1900–1908 (2014)Google Scholar
  69. 69.
    J.G. Bai, J.N. Calata, G.Q. Lu, IEEE Trans. Electron. Packag. Manuf. 30, 241–245 (2007)CrossRefGoogle Scholar
  70. 70.
    P. Rajaguru, H. Lu, C. Bailey, Microelectron. Reliab. 55, 919–930 (2015)CrossRefGoogle Scholar
  71. 71.
    X. Cao, T. Wang, K.D.T. Ngo, G.Q. Lu, IEEE Trans. Compon. Pack. Manuf. Tech. 1, 495–501 (2011)CrossRefGoogle Scholar
  72. 72.
    W. Sabbah, R. Riva, S. Hascoet, C. Buttay, S. Azzopardi, E. Woirgard, D. Planson, B. Allard, R. Meuret, 7th International Conference on Integrated Power Systems, Nuremberg, Germany, 2012. p. 1Google Scholar
  73. 73.
    J. Rudzki, L. Jensen, M. Poech, L. Schmidt, F. Osterwald, 7th IEEE International Conference on Integrated Power Electronics Systems, 2012, pp. 1–6Google Scholar
  74. 74.
    S. Duch, T. Krebs, W. Schmitt, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016. pp. 1–6Google Scholar
  75. 75.
    C. Schmidt, F. Altmann, O. Breitenstein, Mater. Sci. Eng. B 177, 1261–1267 (2012)CrossRefGoogle Scholar
  76. 76.
    M. Hutter, C. Weber, C. Ehrhardt, K. D. Lang, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016. pp. 1–7Google Scholar
  77. 77.
    C. Weber, M. Hutter, H. Oppermann, K. D. Lang, PCIM International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2014. pp. 1–8Google Scholar
  78. 78.
    U. Sagebaum, ECPE European Centre for Power Electronics Double Workshop, Munich, Germany, 2014Google Scholar
  79. 79.
    S. Brand, F. Naumann, S. Tismer, B. Boettge, J. Rudzki, F. Osterwald, M. Petzold, 9th IEEE International Conference on Integrated Power Electronics Systems, 2016. pp. 1–6Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Robert Bosch (Australia) Pte Ltd.ClaytonAustralia
  3. 3.ON Semiconductor (Malaysia) Sdn BhdSerembanMalaysia

Personalised recommendations