The InGaN Material System and Blue/Green Emitters

  • Ning Zhang
  • Zhiqiang Liu
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)


Due to the advantage of low-power consumption, long lifetime, and high efficiency, nitride-based light-emitting diodes (LEDs) have long been considered to be a promising technology for next-generation illumination. The efforts on this topic could be tracked back to the 1950s. The possibility of a new lighting technology using GaN was considered by Philips Research Laboratories in the 1950s, and the photoluminescence of GaN power was obtained by H.G. Grimmeiss and H. Koelmans. The first single-crystal film of GaN was prepared by Maruska and Tietjenusing, the HVPE technique in 1969. At the end of the 1980s, the breakthrough of Amano, Akasaki, and Nakamura on p doping opened the way to p-n junctions in GaN. Another crucial step in developing efficient blue LEDs was the growth of alloys (AlGaN, InGaN), which are necessary to produce heterojunctions. In 1994, Nakamura and co-workers achieved a quantum efficiency of 2.7% using a double heterojunction InGaN/AlGaN. It was the first step toward the commercial development of efficient nitride LEDs, and their tremendous application was open. Today’s efficient of LEDs is the result of a long series of breakthroughs in fundamental materials physics and high-quality crystal growth, in device physics with advanced heterostructure design, and in optical physics for light extraction. And the application will continue to expand to many novel fields. At the same time, the efficiency, which relates to fundamental physics, growth, and fabrication, still needs to be further improved. In this chapter, some pioneering and significant experiment results.

In this work, we will focus on two important wavelength range of nitride LEDs, namely, blue and green one. We describe a number of factors that affect the efficiency of LEDs and analyze the effects of polarization, carrier transport, carrier localization, current expansion, epitaxial structure design, Auger recombination, and light extraction. Some pioneering and significant experiment results will be presented. We hope it can provide some meaningful information for the development of high-efficiency GaN-based blue and green LEDs.


  1. 1.
    H.P. Maruskas, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal-line GaN. Appl. Phys. Lett. 15(10), 327 (1969)CrossRefGoogle Scholar
  2. 2.
    A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, Indium nitride (Inn): a review on growth, characterization, and properties. J. Appl. Phys. 94(5), 2779–2808 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an Aln buffer layer. Appl. Phys. Lett. 48(5), 353–355 (1986)CrossRefGoogle Scholar
  4. 4.
    S. Yoshida, S. Misawa, S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using Aln-coated sapphire substrates. Appl. Phys. Lett. 42(5), 427–429 (1983)CrossRefGoogle Scholar
  5. 5.
    D.K. Wickenden, T.J. Kistenmacher, W.A. Bryden, J.S. Morgan, A.E. Wickenden, The effect of self nucleation layers on the MOCVD growth of gallium nitride on sapphire. Mater. Res. Soc. 221, 167–172 (1991)CrossRefGoogle Scholar
  6. 6.
    S. Nakamura, GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30(4A), L1705–L1707 (1991)CrossRefGoogle Scholar
  7. 7.
    S. Nakamura, The roles of structural imperfections in Ingan-based blue light-emitting diodes and laser diodes. Science 281(5379), 956–961 (1998)CrossRefGoogle Scholar
  8. 8.
    S. Tomoya, S. Hisao, H. Maosheng, N. Yoshiki, K. Satoshi, T. Satoru, Y. Kenji, N. Katsushi, T.R. Linda, S. Shiro, Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 37(4A), L398–L400 (1998)Google Scholar
  9. 9.
    K. Forghani, M. Klein, F. Lipski, S. Schwaiger, J. Hertkorn, R.A.R. Leute, F. Scholz, M. Feneberg, B. Neuschl, K. Thonke, O. Klein, U. Kaiser, R. Gutt, T. Passow, High quality AlGaN epilayers grown on sapphire using SiNx interlayers. J. Cryst. Growth 315(1), 216–219 (2011)CrossRefGoogle Scholar
  10. 10.
    H.-Y. Shin, S.K. Kwon, Y.I. Chang, M.J. Cho, K.H. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst. Growth 311(17), 4167–4170 (2009)CrossRefGoogle Scholar
  11. 11.
    C.I.H. Ashby, C.C. Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, L. Griego, Low-dislocation-density GaN from a single growth on a textured substrate. Appl. Phys. Lett. 77(20), 3233–3235 (2000)CrossRefGoogle Scholar
  12. 12.
    L. Meng, W. Guohong, L. Hongjian, L. Zhicong, Y. Ran, L. Panpan, L. Jing, Y. Xiaoyan, W. Junx, L. Jinmin, Low threading dislocation density in GaN films grown on patterned sapphire substrates. J. Semicond. 33, 113002 (2012)CrossRefGoogle Scholar
  13. 13.
    H.K.N. Kazumasa, O. Masaru, M. Hiromitsu, N. Mitsuhisa, M. Atsushi, M. Hideto, I. Yasushi, M. Takayoshi, Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (facelo). J. Cryst. Growth 221(1-4), 316–326 (2000)CrossRefGoogle Scholar
  14. 14.
    K. Iida, T. Kawashima, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, A. Bandoh, Epitaxial lateral overgrowth of Alxga1−Xn (X>0.2) on sapphire and its application to Uv-B-light-emitting devices. J. Cryst. Growth 298, 265–267 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Matsuoka, T. Okimoto, K. Nishino, Y. Naoi, S. Sakai, Algan epitaxial lateral overgrowth on Ti-evaporated GaN/sapphire substrate. J. Cryst. Growth 311(10), 2847–2849 (2009)CrossRefGoogle Scholar
  16. 16.
    T. Satoru, T. Misaichi, A. Yoshinobu, Anti-surfactant in Iii-nitride epitaxy quantum dot formation and dislocation termination. Jpn. J. Appl. Phys. 39(8B), L831–L834 (2000)Google Scholar
  17. 17.
    K. Engl, M. Beer, N. Gmeinwieser, U.T. Schwarz, J. Zweck, W. Wegscheider, S. Miller, A. Miler, H.J. Lugauer, G. Brüderl, A. Lell, V. Härle, Influence of an in situ-deposited intermediate layer inside GaN and AlGaN layers on SiC substrates. J. Cryst. Growth 289(1), 6–13 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Yoshiki, K. Shota, H. Kazumasa, S. Nobuhiko, Selective growth of wurtzite GaN and AlGaN on GaN/sapphire substrates by metalorganic vapor phase epitaxy. J. Cryst. Growth 144(3–4), 133–140 (1994)Google Scholar
  19. 19.
    O. Klein, J. Biskupek, U. Kaiser, K. Forghani, S.B. Thapa, F. Scholz, Simulation supported analysis of the effect of sinxinterlayers in AlGaN on the dislocation density reduction. J. Phys. Conf. Ser. 209(1), 012018 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Haffouz, H. Lahrèche, P. Vennéguès, P. de Mierry, B. Beaumont, F. Omnès, P. Gibart, The effect of the Si/N treatment of a nitridated sapphire surface on the growth mode of GaN in low-pressure metalorganic vapor phase epitaxy. Appl. Phys. Lett. 73(9), 1278–1280 (1998)CrossRefGoogle Scholar
  21. 21.
    V. Srikant, J.S. Speck, D.R. Clarke, Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82(9), 4286–4295 (1997)CrossRefGoogle Scholar
  22. 22.
    K.K. Ansah Antwi, C.B. Soh, Q. Wee, R.J.N. Tan, P. Yang, H.R. Tan, L.F. Sun, Z.X. Shen, S.J. Chua, Crystallographically tilted and partially strain relaxed GaN grown on inclined {111} facets etched on Si(100) substrate. J. Appl. Phys. 114(24), 243512 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Liu, J.H. Edgar, Substrates for gallium nitride epitaxy. Mater. Sci. Eng. 37(3), 61–127 (2002)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Xie, C.H. Wei, S.F. Chen, S.Y. Jiang, J.H. Edgar, Surface etching of 6h-Sic (0001) and surface morphology of the subsequently grown GaN via MOCVD. J. Electron. Mater. 29(4), 411 (2000)CrossRefGoogle Scholar
  25. 25.
    M.I. Utama, Q. Zhang, J. Zhang, Y. Yuan, F.J. Belarre, J. Arbiol, Q. Xiong, Recent developments and future directions in the growth of nanostructures by Van Der Waals epitaxy. Nanoscale 5(9), 3570–3588 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Chung, C.H. Lee, G.C. Yi, Transferable GaN layers grown on ZNO-coated graphene layers for optoelectronic devices. Science 330(6004), 655–657 (2010)CrossRefGoogle Scholar
  27. 27.
    K. Chung, S. In Park, H. Baek, J.-S. Chung, G.-C. Yi, High-quality GaN films grown on chemical vapor-deposited graphene films. NPG Asia Mater. 4(9), e24 (2012)CrossRefGoogle Scholar
  28. 28.
    Z.Y. Al Balushi, T. Miyagi, Y.-C. Lin, K. Wang, L. Calderin, G. Bhimanapati, J.M. Redwing, J.A. Robinson, The impact of graphene properties on GaN and Aln nucleation. Surf. Sci. 634, 81–88 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Kim, C. Bayram, H. Park, C.W. Cheng, C. Dimitrakopoulos, J.A. Ott, K.B. Reuter, S.W. Bedell, D.K. Sadana, Principle of direct Van Der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014)CrossRefGoogle Scholar
  30. 30.
    S.J. Chae, Y.H. Kim, T.H. Seo, D.L. Duong, S.M. Lee, M.H. Park, E.K. Suh, Direct growth of etch pit-free GaN crystals on few-layer graphene. RSC Adv. 5(2), 1343–1349 (2012)CrossRefGoogle Scholar
  31. 31.
    J.W. Shon, J. Ohta, K. Ueno, A. Kobayashi, H. Fujioka, Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Sci. Rep. 4, 5325 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Qi, Y. Xu, Z. Li, E. Zhao, S. Yang, B. Cao, J. Zhang, J. Wang, K. Xu, Stress analysis of transferable crack-free gallium nitride microrods grown on graphene/Sic substrate. Mater. Lett. 185, 315–318 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan, J.B. Park, J.H. Kang, Y.J. Park, K.B. Ko, H.Y. Kim, H.K. Kim, J.H. Ryu, Y.S. Katharria, C.J. Choi, C.H. Hong, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Han, N. Han, E. Jung, B.D. Ryu, K.B. Ko, T.v. Cuong, H. Kim, J.K. Kim, C.-H. Hong, Effect of curved graphene oxide in a GaN light-emitting-diode for improving heat dissipation with a patterned sapphire substrate. Semicond. Sci. Technol. 31(8), 085010 (2016)CrossRefGoogle Scholar
  35. 35.
    J.W. Chung, F.S. Ohuchi, Deposition of AlN on WS2 (0001) substrate by atomic layer growth process. MRS Online Proc. Library Arch. 449, 379–384 (1996)CrossRefGoogle Scholar
  36. 36.
    A. Yamada, K.P. Ho, T. Maruyama, K. Akimoto, Molecular beam epitaxy of GaN on a substrate of Mos2 layered compound. Appl. Phys. A 69(1), 89–92 (1999)CrossRefGoogle Scholar
  37. 37.
    P. Gupta, A.A. Rahman, S. Subramanian, S. Gupta, A. Thamizhavel, T. Orlova, S. Rouvimov, S. Vishwanath, V. Protasenko, M.R. Laskar, H.G. Xing, D. Jena, A. Bhattacharya, Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth. Sci. Rep. 6, 23708 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Tangi, P. Mishra, C.C. Tseng, T.K. Ng, M.N. Hedhili, D.H. Anjum, M.S. Alias, N. Wei, L.J. Li, B.S. Ooi, Band alignment at GaN/single-layer WSe2 interface. ACS Appl. Mater. Interfaces 9(10), 9110–9117 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Tangi, P. Mishra, T.K. Ng, M.N. Hedhili, B. Janjua, M.S. Alias, D.H. Anjum, C.-C. Tseng, Y. Shi, H.J. Joyce, L.-J. Li, B.S. Ooi, Determination of band offsets at GaN/single-layer MoS2 heterojunction. Appl. Phys. Lett. 109(3), 032104 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Hwang, W. Jin Ha, J. Kyu Kim, J. Xu, J. Cho, E. Fred Schubert, Promotion of hole injection enabled by Gainn/GaN light-emitting triodes and its effect on the efficiency droop. Appl. Phys. Lett. 99(18), 181115 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Kang, H. Li, Z. Li, Z. Liu, P. Ma, X. Yi, G. Wang, Enhancing the performance of green GaN-based light-emitting diodes with graded superlattice AlGaN/GaN inserting layer. Appl. Phys. Lett. 103(10), 102104 (2013)CrossRefGoogle Scholar
  42. 42.
    Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J.S. Speck, S.P. DenBaars, S. Nakamura, High-power blue-violet semipolar ($20\bar{2}\bar{1}$) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm$^{2}$. Appl. Phys. Express 4(8), 082104 (2011)CrossRefGoogle Scholar
  43. 43.
    H.J. Chung, R.J. Choi, M.H. Kim, J.W. Han, Y.M. Park, Y.S. Kim, H.S. Paek, C.S. Sone, Y.J. Park, J.K. Kim, E.F. Schubert, Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers. Appl. Phys. Lett. 95(24), 241109 (2009)CrossRefGoogle Scholar
  44. 44.
    H.P. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G.A. Botton, Z. Mi, Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett. 12(3), 1317–1323 (2012)CrossRefGoogle Scholar
  45. 45.
    X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, T. Paskova, G. Mulholland, K.R. Evans, InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes. Appl. Phys. Lett. 97(3), 031110 (2010)CrossRefGoogle Scholar
  46. 46.
    C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, J.S. Speck, The efficiency challenge of nitride light-emitting diodes for lighting. Phys. Status Solidi A 212(5), 899–913 (2015)CrossRefGoogle Scholar
  47. 47.
    T. Bret, V. Wagner, D. Martin, P. Hoffmann, M. Ilegems, A mechanistic study of GaN laser lift-off. Phys. Stat. Sol. A 194(2), 559–562 (2002)CrossRefGoogle Scholar
  48. 48.
    J.S. Ha, S.W. Lee, H.J. Lee, H.J. Lee, S.H. Lee, H. Goto, T. Kato, K. Fujii, M.W. Cho, T. Yao, The fabrication of vertical light-emitting diodes using chemical lift-off process. IEEE Photon. Technol. Lett. 20(1-4), 175–177 (2008)CrossRefGoogle Scholar
  49. 49.
    Y.H. Zhou, Y.W. Tang, J.P. Rao, F. Jiang, Improvement for extraction efficiency of vertical GaN-based LED on si substrate by photo-enhanced wet etching. Acta Opt. Sin. 29(1), 252–255 (2009)CrossRefGoogle Scholar
  50. 50.
    M. Tchernycheva, P. Lavenus, H. Zhang, A.V. Babichev, G. Jacopin, M. Shahmohammadi, F.H. Julien, R. Ciechonski, G. Vescovi, O. Kryliouk, InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact. Nano Lett. 14(5), 2456–2465 (2014)CrossRefGoogle Scholar
  51. 51.
    J.R. Riley, S. Padalkar, Q. Li, P. Lu, D.D. Koleske, J.J. Wierer, G.T. Wang, L.J. Lauhon, Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. Nano Lett. 13(9), 4317–4325 (2013)CrossRefGoogle Scholar
  52. 52.
    H.P. Nguyen, S. Zhang, A.T. Connie, M.G. Kibria, Q. Wang, I. Shih, Z. Mi, Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett. 13(11), 5437–5442 (2013)CrossRefGoogle Scholar
  53. 53.
    R. Koester, J.S. Hwang, D. Salomon, X. Chen, C. Bougerol, J.P. Barnes, S. Dang Dle, L. Rigutti, A. de Luna Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, J. Eymery, M-plane core-shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices. Nano Lett. 11(11), 4839–4845 (2011)CrossRefGoogle Scholar
  54. 54.
    F. Qian, S. Gradečak, Y. Li, C. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)CrossRefGoogle Scholar
  55. 55.
    P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Ramsteiner, M. Reiche, K.H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406(24), 865–868 (2000)CrossRefGoogle Scholar
  56. 56.
    S.P. Chang, Y.C. Chen, J.K. Huang, Y.J. Cheng, J.R. Chang, K.P. Sou, Y.T. Kang, H.C. Yang, T.C. Hsu, H.C. Kuo, C.Y. Chang, Electrically driven nanopyramid green light emitting diode. Appl. Phys. Lett. 100(6), 061106 (2012)CrossRefGoogle Scholar
  57. 57.
    S. Li, A. Waag, GaN based nanorods for solid state lighting. J. Appl. Phys. 111(7), 071101 (2012)CrossRefGoogle Scholar
  58. 58.
    W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10(9), 3355–3359 (2010)CrossRefGoogle Scholar
  59. 59.
    R. Armitage, K. Tsubaki, Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy. Nanotechnology 21(19), 195202 (2010)CrossRefGoogle Scholar
  60. 60.
    J. Ma, L. Wang, Z. Liu, G. Yuan, X. Ji, P. Ma, J. Wang, X. Yi, G. Wang, J. Li, Nitride-based micron-scale hexagonal pyramids array vertical light emitting diodes by N-polar wet etching. Opt. Express 21(3), 3547–3556 (2013)CrossRefGoogle Scholar
  61. 61.
    L. Wang, J. Ma, Z. Liu, X. Yi, G. Yuan, G. Wang, N-polar GaN etching and approaches to quasi-perfect micro-scale pyramid vertical light-emitting diodes array. J. Appl. Phys. 114(13), 133101 (2013)CrossRefGoogle Scholar
  62. 62.
    J. Kang, Z. Li, Z. Liu, H. Li, Y. Zhao, Y. Tian, P. Ma, X. Yi, G. Wang, Investigation of the wet-etching mechanism of Ga-polar AlGaN/GaN micro-pillars. J. Cryst. Growth 386, 175–178 (2014)CrossRefGoogle Scholar
  63. 63.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)CrossRefGoogle Scholar
  64. 64.
    T. Kuykendall, P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, P. Yang, Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 3(8), 524–528 (2004)CrossRefGoogle Scholar
  65. 65.
    S. Wu, L. Wang, X. Yi, Z. Liu, T. Wei, G. Yuan, J. Wang, J. Li, Influence of lateral growth on the optical properties of GaN nanowires grown by hydride vapor phase epitaxy. J. Appl. Phys. 122(20), 205302 (2017)CrossRefGoogle Scholar
  66. 66.
    S. Wu, L. Wang, X. Yi, Z. Liu, J. Yan, G. Yuan, T. Wei, J. Wang, J. Li, Crystallographic orientation control and optical properties of GaN nanowires. RSC Adv. 8(4), 2181–2187 (2018)CrossRefGoogle Scholar
  67. 67.
    S. Wu, L. Wang, Z. Liu, X. Yi, Y. Huang, C. Yang, T. Wei, J. Yan, G. Yuan, J. Wang, J. Li, Ultrafast growth of horizontal GaN nanowires by HVPE through flipping the substrate. Nanoscale 10(13), 5888–5896 (2018)CrossRefGoogle Scholar
  68. 68.
    D. Stephen, X.S. Hersee, X. Wang, The controlled growth of GaN nanowires. Nano Lett. 6(8), 1808–1811 (2006)CrossRefGoogle Scholar
  69. 69.
    P. Ren, G. Han, B.-L. Fu, B. Xue, N. Zhang, Z. Liu, L.-X. Zhao, J.-X. Wang, J.-M. Li, Selective area growth and characterization of GaN nanorods fabricated by adjusting the hydrogen flow rate and growth temperature with metal organic chemical vapor deposition. Chin. Phys. Lett. 33(6), 068101 (2016)CrossRefGoogle Scholar
  70. 70.
    K. Wu, T. Wei, D. Lan, X. Wei, H. Zheng, Y. Chen, H. Lu, K. Huang, J. Wang, Y. Luo, J. Li, Phosphor-free nanopyramid white light-emitting diodes grown on {101¯1} planes using nanospherical-lens photolithography. Appl. Phys. Lett. 103(24), 241107 (2013)CrossRefGoogle Scholar
  71. 71.
    H. Sekiguchi, K. Kishino, A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96(23), 231104 (2010)CrossRefGoogle Scholar
  72. 72.
    H. Lin, Y. Lu, H. Chen, H. Lee, S. Gwo, InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97(7), 073101 (2010)CrossRefGoogle Scholar
  73. 73.
    Y.H. Ra, R. Navamathavan, J.H. Park, C.R. Lee, Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. Nano Lett. 13(8), 3506–3516 (2013)CrossRefGoogle Scholar
  74. 74.
    Y.J. Hong, C.H. Lee, A. Yoon, M. Kim, H.K. Seong, H.J. Chung, C. Sone, Y.J. Park, G.C. Yi, Visible-color-tunable light-emitting diodes. Adv. Mater. 23(29), 3284–3288 (2011)CrossRefGoogle Scholar
  75. 75.
    V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 60(12), 8849 (1999)CrossRefGoogle Scholar
  76. 76.
    F. Bernardini, V. Fiorentini, in Spontaneous vs. piezoelectric polarization in III-V nitrides: conceptual aspects and practical consequences. arXiv preprint cond-mat/9908087, 1999CrossRefGoogle Scholar
  77. 77.
    D. Doppalapudi, S. Basu, K. Ludwig Jr., T. Moustakas, Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy. J. Appl. Phys. 84(3), 1389–1395 (1998)CrossRefGoogle Scholar
  78. 78.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56(16), R10024 (1997)CrossRefGoogle Scholar
  79. 79.
    S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, H. Kudo, Internal quantum efficiency of highly-efficient In x Ga 1− x N-based near-ultraviolet light-emitting diodes. Appl. Phys. Lett. 83(24), 4906–4908 (2003)CrossRefGoogle Scholar
  80. 80.
    A. Hangleiter, F. Hitzel, S. Lahmann, U. Rossow, Composition dependence of polarization fields in GaInN/GaN quantum wells. Appl. Phys. Lett. 83(6), 1169–1171 (2003)CrossRefGoogle Scholar
  81. 81.
    J. Xu, M.F. Schubert, A.N. Noemaun, D. Zhu, J.K. Kim, E.F. Schubert, M.H. Kim, H.J. Chung, S. Yoon, C. Sone, Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes. Appl. Phys. Lett. 94(1), 011113 (2009)CrossRefGoogle Scholar
  82. 82.
    T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36(4A), L382 (1997)CrossRefGoogle Scholar
  83. 83.
    C.-F. Huang, T.-C. Liu, Y.-C. Lu, W.-Y. Shiao, Y.-S. Chen, J.-K. Wang, C.-F. Lu, C. Yang, Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth. J. Appl. Phys. 104(12), 123106 (2008)CrossRefGoogle Scholar
  84. 84.
    J.Y. Park, J.H. Lee, S. Jung, T. Ji, InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer. Phys. Status Solidi A 213(6), 1610–1614 (2016)CrossRefGoogle Scholar
  85. 85.
    W. Lundin, A. Nikolaev, A. Sakharov, E. Zavarin, G. Valkovskiy, M. Yagovkina, S. Usov, N. Kryzhanovskaya, V. Sizov, P. Brunkov, Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice. J. Cryst. Growth 315(1), 267–271 (2011)CrossRefGoogle Scholar
  86. 86.
    K. Lee, C.-R. Lee, J.H. Lee, T.-H. Chung, M.-Y. Ryu, K.-U. Jeong, J.-Y. Leem, J.S. Kim, Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes. Opt. Express 24(7), 7743–7751 (2016)CrossRefGoogle Scholar
  87. 87.
    Y. Xia, W. Hou, L. Zhao, M. Zhu, T. Detchprohm, C. Wetzel, Boosting green GaInN/GaN light-emitting diode performance by a GaInN underlying layer. IEEE Trans. Electron. Dev. 57(10), 2639–2643 (2010)CrossRefGoogle Scholar
  88. 88.
    L. Hsu, W. Walukiewicz, Effect of polarization fields on transport properties in AlGaN/GaN heterostructures. J. Appl. Phys. 89(3), 1783–1789 (2001)CrossRefGoogle Scholar
  89. 89.
    A. Hangleiter, J.S. Im, H. Kollmer, S. Heppel, J. Off, F. Scholz, The role of piezoelectric fields in GaN-based quantum wells. MRS Internet J. Nitride Semicond. Res. 3, e15 (1998)CrossRefGoogle Scholar
  90. 90.
    C. Wood, D. Jena, Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, New York, 2007)Google Scholar
  91. 91.
    Z. Ning, L. Zhe, S. Zhao, R. Peng, W. Xiao-Dong, F. Xiang-Xu, D. Peng, D. Cheng-Xiao, Z. Shao-Xin, F. Bing-Lei, Reduction of efficiency droop and modification of polarization fields of InGaN-based green light-emitting diodes via Mg-doping in the barriers. Chin. Phys. Lett. 30(8), 087101 (2013)CrossRefGoogle Scholar
  92. 92.
    C.-Y. Huang, Q. Yan, Y. Zhao, K. Fujito, D. Feezell, C.G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, Influence of Mg-doped barriers on semipolar (20 2¯ 1) multiple-quantum-well green light-emitting diodes. Appl. Phys. Lett. 99(14), 141114 (2011)CrossRefGoogle Scholar
  93. 93.
    J. Zhang, X.-J. Zhuo, D.-W. Li, L. Yu, K. Li, Y.-W. Zhang, J.-S. Diao, X.-F. Wang, S.-T. Li, Effect of Mg doping in GaN interlayer on the performance of green light-emitting diodes. IEEE Photon. Technol. Lett. 27(2), 117–120 (2015)CrossRefGoogle Scholar
  94. 94.
    Z. Lin, R. Hao, G. Li, S. Zhang, Effect of Si doping in barriers of InGaN/GaN multiple quantum wells on the performance of green light-emitting diodes. Jpn. J. Appl. Phys. 54(2), 022102 (2015)CrossRefGoogle Scholar
  95. 95.
    J.-H. Ryou, J. Limb, W. Lee, J. Liu, Z. Lochner, D. Yoo, R.D. Dupuis, Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes. IEEE Photon. Technol. Lett. 20(21), 1769–1771 (2008)CrossRefGoogle Scholar
  96. 96.
    F. Scholz, Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27(2), 024002 (2012)CrossRefGoogle Scholar
  97. 97.
    Z. Wu, A. Fischer, F. Ponce, B. Bastek, J. Christen, T. Wernicke, M. Weyers, M. Kneissl, Structural and optical properties of nonpolar GaN thin films. Appl. Phys. Lett. 92(17), 171904 (2008)CrossRefGoogle Scholar
  98. 98.
    N. Kriouche, P. Vennéguès, M. Nemoz, G. Nataf, P. De Mierry, Stacking faults blocking process in (11− 22) semipolar GaN growth on sapphire using asymmetric lateral epitaxy. J. Cryst. Growth 312(19), 2625–2630 (2010)CrossRefGoogle Scholar
  99. 99.
    H. Zhao, G. Liu, X.-H. Li, R. Arif, G. Huang, J. Poplawsky, S.T. Penn, V. Dierolf, N. Tansu, Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime. IET Optoelectron. 3(6), 283–295 (2009)CrossRefGoogle Scholar
  100. 100.
    H. Zhao, G. Liu, J. Zhang, J.D. Poplawsky, V. Dierolf, N. Tansu, Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 19(104), A991–A1007 (2011)CrossRefGoogle Scholar
  101. 101.
    Y.-A. Chang, Y.-T. Kuo, J.-Y. Chang, Y.-K. Kuo, Investigation of InGaN green light-emitting diodes with chirped multiple quantum well structures. Opt. Lett. 37(12), 2205–2207 (2012)CrossRefGoogle Scholar
  102. 102.
    H. Zhao, G. Liu, N. Tansu, Analysis of InGaN-delta-InN quantum wells for light-emitting diodes. Appl. Phys. Lett. 97(13), 131114 (2010)CrossRefGoogle Scholar
  103. 103.
    C. Bayram, F.H. Teherani, D. Rogers, M. Razeghi, A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN. Appl. Phys. Lett. 93(8), 081111 (2008)CrossRefGoogle Scholar
  104. 104.
    S. Verma, S.K. Pandey, S.K. Pandey, S. Mukherjee, Theoretical simulation of Hybrid II-O/III-N green light-emitting diode with MgZnO/InGaN/MgZnO heterojunction. Mater. Sci. Semicond. Process. 31, 340–350 (2015)CrossRefGoogle Scholar
  105. 105.
    L. Han, K. Kash, H. Zhao, High-efficiency green light-emitting diodes based on InGaN-ZnGeN 2 type-II quantum wells. Proc. SPIE 2014, 90030 (2014)Google Scholar
  106. 106.
    Y.-J. Lee, C.-H. Chen, C.-J. Lee, Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells. IEEE Photon. Technol. Lett. 22(20), 1506–1508 (2010)CrossRefGoogle Scholar
  107. 107.
    J. Piprek, S. Li, Electron leakage effects on GaN-based light-emitting diodes. Opt. Quant. Electron. 42(2), 89–95 (2010)CrossRefGoogle Scholar
  108. 108.
    N. Zhang, Z. Liu, T. Wei, L. Zhang, X. Wei, X. Wang, H. Lu, J. Li, J. Wang, Effect of the graded electron blocking layer on the emission properties of GaN-based green light-emitting diodes. Appl. Phys. Lett. 100(5), 053504 (2012)CrossRefGoogle Scholar
  109. 109.
    K.J. Vampola, M. Iza, S. Keller, S.P. DenBaars, S. Nakamura, Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl. Phys. Lett. 94(6), 061116 (2009)Google Scholar
  110. 110.
    L.-B. Chang, M.-J. Lai, R.-M. Lin, C.-H. Huang, Effect of electron leakage on efficiency droop in wide-well InGaN-based light-emitting diodes. Appl. Phys. Express 4(1), 012106 (2011)CrossRefGoogle Scholar
  111. 111.
    J. Piprek, Z. Simon Li, Sensitivity analysis of electron leakage in III-nitride light-emitting diodes. Appl. Phys. Lett. 102(13), 131103 (2013)CrossRefGoogle Scholar
  112. 112.
    H.J. Kim, S. Choi, S.-S. Kim, J.-H. Ryou, P.D. Yoder, R.D. Dupuis, A.M. Fischer, K. Sun, F.A. Ponce, Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes. Appl. Phys. Lett. 96(10), 101102 (2010)CrossRefGoogle Scholar
  113. 113.
    D.-W. Lin, A.-J. Tzou, J.-K. Huang, B.-C. Lin, C.-Y. Chang, H.-C. Kuo, in Greatly improved efficiency droop for InGaN-based green light emitting diodes by quaternary content superlattice electron blocking layer. 2015 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2015). pp. 15–16Google Scholar
  114. 114.
    C. Wang, S. Chang, P. Ku, J. Li, Y. Lan, C. Lin, H. Yang, H. Kuo, T. Lu, S. Wang, Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers. Appl. Phys. Lett. 99(17), 171106 (2011)CrossRefGoogle Scholar
  115. 115.
    H.C. Lin, G.Y. Lee, H.H. Liu, N.W. Hsu; C.C. Wu, J.I. Chyi, in Polarization-enhanced Mg doping in InGaN/GaN superlattice for green light-emitting diodes. Conference on Lasers and Electro-Optics, Optical Society of America, 2009, p. CMM4Google Scholar
  116. 116.
    J.-Y. Kim, M.-K. Kwon, S.-J. Park, S. Kim, J.W. Kim, Y.C. Kim, Improving the performance of green LEDs by low-temperature annealing of p-GaN with PdZn. Electrochem. Solid-State Lett. 12(5), H185–H187 (2009)CrossRefGoogle Scholar
  117. 117.
    C. Wang, C. Ke, C. Lee, S. Chang, W. Chang, J. Li, Z. Li, H. Yang, H. Kuo, T. Lu, Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer. Appl. Phys. Lett. 97(26), 261103 (2010)CrossRefGoogle Scholar
  118. 118.
    N. El-Masry, E. Piner, S. Liu, S. Bedair, Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 72(1), 40–42 (1998)CrossRefGoogle Scholar
  119. 119.
    C. Tran, R. Karlicek, M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M. Brown, J. Nering, I. Ferguson, Phase separation in InGaN/GaN multiple quantum wells and its relation to brightness of blue and green LEDs. J. Cryst. Growth 195(1), 397–400 (1998)CrossRefGoogle Scholar
  120. 120.
    J. Wang, L. Wang, W. Zhao, Z. Hao, Y. Luo, Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization. Appl. Phys. Lett. 97(20), 201112 (2010)CrossRefGoogle Scholar
  121. 121.
    B. Monemar, B. Sernelius, Defect related issues in the “current roll-off” in InGaN based light emitting diodes. Appl. Phys. Lett. 91(18), 181103 (2007)CrossRefGoogle Scholar
  122. 122.
    I.-K. Park, M.-K. Kwon, J.-O. Kim, S.-B. Seo, J.-Y. Kim, J.-H. Lim, S.-J. Park, Y.-S. Kim, Green light-emitting diodes with self-assembled In-rich InGaN quantum dots. Appl. Phys. Lett. 91(13), 133105 (2007)CrossRefGoogle Scholar
  123. 123.
    H. Jeong, H.J. Jeong, H.M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, M.S. Jeong, Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes. Sci. Rep. 5, 9373 (2015)CrossRefGoogle Scholar
  124. 124.
    A. Hori, D. Yasunaga, A. Satake, K. Fujiwara, Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes. Appl. Phys. Lett. 79(22), 3723–3725 (2001)CrossRefGoogle Scholar
  125. 125.
    C.-H. Lu, Y.-C. Li, Y.-H. Chen, S.-C. Tsai, Y.-L. Lai, Y.-L. Li, C.-P. Liu, Output power enhancement of InGaN/GaN based green light-emitting diodes with high-density ultra-small In-rich quantum dots. J. Alloys Compd. 555, 250–254 (2013)CrossRefGoogle Scholar
  126. 126.
    M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97(1), 011103 (2010)CrossRefGoogle Scholar
  127. 127.
    W. Lv, L. Wang, L. Wang, Y. Xing, D. Yang, Z. Hao, Y. Luo, InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Appl. Phys. Express 7(2), 025203 (2014)CrossRefGoogle Scholar
  128. 128.
    J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, H. Li, Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure. Appl. Phys. Express 8(9), 094001 (2015)CrossRefGoogle Scholar
  129. 129.
    J. Rong, L. Hai, C. Dun-Jun, R. Fang-Fang, Y. Da-Wei, Z. Rong, Z. You-Dou, Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes. Chin. Phys. B 22(4), 047805 (2013)CrossRefGoogle Scholar
  130. 130.
    K. Bulashevich, S.Y. Karpov, Is auger recombination responsible for the efficiency rollover in III-nitride light-emitting diodes? Phys. Status Solidi C 5(6), 2066–2069 (2008)CrossRefGoogle Scholar
  131. 131.
    Y. Shen, G. Mueller, S. Watanabe, N. Gardner, A. Munkholm, M. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91(14), 141101 (2007)CrossRefGoogle Scholar
  132. 132.
    E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98(16), 161107 (2011)CrossRefGoogle Scholar
  133. 133.
    S. Karpov, ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quant. Electron. 47(6), 1293–1303 (2015)CrossRefGoogle Scholar
  134. 134.
    F. Nippert, S.Y. Karpov, G. Callsen, B. Galler, T. Kure, C. Nenstiel, M.R. Wagner, M. Straßburg, H.-J. Lugauer, A. Hoffmann, Temperature-dependent recombination coefficients in InGaN light-emitting diodes: hole localization, auger processes, and the green gap. Appl. Phys. Lett. 109(16), 161103 (2016)CrossRefGoogle Scholar
  135. 135.
    A.I. Zhmakin, Enhancement of light extraction from light emitting diodes. Phys. Rep. 498(4), 189–241 (2011)CrossRefGoogle Scholar
  136. 136.
    H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattice. Microst. 48(5), 458–484 (2010)CrossRefGoogle Scholar
  137. 137.
    K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes. Jpn. J. Appl. Phys. 43(2A), L180 (2004)CrossRefGoogle Scholar
  138. 138.
    T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005)MathSciNetCrossRefGoogle Scholar
  139. 139.
    B.-J. Kim, C. Lee, Y. Jung, K. Hyeon Baik, M.A. Mastro, J.K. Hite, C.R. Eddy Jr., J. Kim, Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes. Appl. Phys. Lett. 99(14), 143101 (2011)CrossRefGoogle Scholar
  140. 140.
    Y. Zhang, L. Wang, X. Li, X. Yi, N. Zhang, J. Li, H. Zhu, G. Wang, Annealed InGaN green light-emitting diodes with graphene transparent conductive electrodes. J. Appl. Phys. 111(11), 114501 (2012)CrossRefGoogle Scholar
  141. 141.
    J.-K. Sheu, I.-H. Hung, W.-C. Lai, S.-C. Shei, M. Lee, Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads. Appl. Phys. Lett. 93(10), 103507 (2008)CrossRefGoogle Scholar
  142. 142.
    J.K. Kim, T. Gessmann, H. Luo, E.F. Schubert, GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector. Appl. Phys. Lett. 84(22), 4508–4510 (2004)CrossRefGoogle Scholar
  143. 143.
    Y. Zhao, D. Hibbard, H. Lee, K. Ma, W. So, H. Liu, Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector. J. Electron. Mater. 32(12), 1523–1526 (2003)CrossRefGoogle Scholar
  144. 144.
    N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, T. Jimbo, Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire. Appl. Phys. Lett. 76(14), 1804–1806 (2000)CrossRefGoogle Scholar
  145. 145.
    C.O. Egalon, R.S. Rogowski, in Increased efficiency LED. Google Patents, 1998Google Scholar
  146. 146.
    J.H. Lee; B.W. Oh; H.S. Choi; J.T. Oh; S.B. Choi, S.Y. Lee, in Vertical GaN-based LED and method of manufacturing the same. Google Patents, 2008Google Scholar
  147. 147.
    J.-Y. Kim, M.-K. Kwon, J.-P. Kim, S.-J. Park, Enhanced light extraction from triangular GaN-based light-emitting diodes. IEEE Photon. Technol. Lett. 19(23), 1865–1867 (2007)CrossRefGoogle Scholar
  148. 148.
    J.-W. Pan, C.-S. Wang, Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis. Opt. Express 20(105), A630–A640 (2012)CrossRefGoogle Scholar
  149. 149.
    D.-W. Jeon, S.-J. Lee, T. Jeong, J.H. Baek, J.-W. Park, L.-W. Jang, M. Kim, I.-H. Lee, J.-W. Ju, Chemical lift-off of (11–22) semipolar GaN using periodic triangular cavities. J. Cryst. Growth 338(1), 134–138 (2012)CrossRefGoogle Scholar
  150. 150.
    Y.-J. Lee, J. Hwang, T. Hsu, M. Hsieh, M. Jou, B. Lee, T. Lu, H. Kuo, S. Wang, Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates. IEEE Photon. Technol. Lett. 18(10), 1152–1154 (2006)CrossRefGoogle Scholar
  151. 151.
    J.-H. Lee, J. Oh, Y. Kim, J.-H. Lee, Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire. IEEE Photon. Technol. Lett. 20(18), 1563–1565 (2008)CrossRefGoogle Scholar
  152. 152.
    Y. Li, S. You, M. Zhu, W. Hou, Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire. Appl. Phys. Lett. 98(15), 151102 (2011)CrossRefGoogle Scholar
  153. 153.
    S.-J. Chang, Y. Lin, Y.-K. Su, C. Chang, T.-C. Wen, S.-C. Shei, J. Ke, C. Kuo, S. Chen, C. Liu, Nitride-based LEDs fabricated on patterned sapphire substrates. Solid State Electron. 47(9), 1539–1542 (2003)CrossRefGoogle Scholar
  154. 154.
    H. Huang, C. Lin, C. Yu, B. Lee, C. Chiu, C. Lai, H. Kuo, K. Leung, T. Lu, S. Wang, Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography. Nanotechnology 19(18), 185301 (2008)CrossRefGoogle Scholar
  155. 155.
    W.C. Peng, Y.C.S. Wu, Improved luminance intensity of InGaN–GaN light-emitting diode by roughening both the p-Ga N surface and the undoped-GaN surface. Appl. Phys. Lett. 89(4), 041116 (2006)CrossRefGoogle Scholar
  156. 156.
    L. Hui, L. Peixian, S. Huifang, Z. Guangcai, Enhancement of extraction efficiency of green LED via surface roughening. Electron. Sci. Technol. 6, 11 (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Semiconductors, Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Solid State LightingBeijingChina
  3. 3.Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and ApplicationBeijingChina

Personalised recommendations