The AlGaInP/AlGaAs Material System and Red/Yellow LED

  • Guohong WangEmail author
  • Xiaoyan Yi
  • Teng Zhan
  • Yang Huang
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)


In this chapter, AlGaInP and AlGaAs alloy compound semiconductor system was reviewed for solid-state lighting application, including their lattice and bandgap structure, heterojunction, and quantum well properties. LEDs based on AlGaInP quantum well and GaAs substrate operating in the red, orange, and yellow visible spectrum were discussed including the major classes of AlGaInP device structures, such as GaP-absorbing substrate LEDs enhanced by distributed Bragg reflectors (DBRs), transparent-substrate LEDs (TS-LEDs), thin-film LEDs (TF-LEDs), and GaP window/current-spreading layer. AlGaInP/AlGaAs material MOCVD epitaxy and LED chip processing technology were introduced briefly.


AlGaInP/AlGaAs Quantum well DBR Red-orange LED 


  1. 1.
    F.M. Steranka, AlGaAs red light-emitting diodes, in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, vol. 48, (Academic, Cambridge, 1997)Google Scholar
  2. 2.
    H.C. Casey Jr., M.B. Panish, Heterostructure Lasers, Part A and Heterostructure Lasers, Part B (Academic, Cambridge, 1978)Google Scholar
  3. 3.
    C.H. Chen, S.A. Stockman, M.J. Peanasky, C.P. Kuo, OMVPE growth of AlGaInP for high efficiency visible light-emitting diodes, in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, vol. 48, (Academic, Cambridge, 1997)Google Scholar
  4. 4.
    L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 5(1), 17–26 (1921)CrossRefGoogle Scholar
  5. 5.
    A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A At. Mol. Opt. Phys. 43(6), 3161–3164 (1991)CrossRefGoogle Scholar
  6. 6.
    F.A. Kish, R.M. Fletcher, AlGaInP light-emitting diodes, in High Brightness Light Emitting Diodes, Semiconductors and Semimetals, vol. 48, (Academic, Cambridge, 1997)Google Scholar
  7. 7.
    X.H. Zhang, S.J. Chua, W.J. Fan, Band offsets at GaInP/AlGaInP(001) heterostructures lattice matched to GaAs. Appl. Phys. Lett. 73(8), 1098–1100 (1998)CrossRefGoogle Scholar
  8. 8.
    K. Kobayashi, Room-temperature CW operation of AlGaInP double-heterostructure visible lasers. Electron. Lett. 21, 931–932 (1985)CrossRefGoogle Scholar
  9. 9.
    C.P. Kuo, R.M. Fletcher, T.D. Osentowski, M.C. Lardizabel, M.G. Craford, V.M. Robbins, Appl. Phys. Lett. 57, 2937 (1990)CrossRefGoogle Scholar
  10. 10.
    H. Sugawara, M. Ishikawa, G. Hatakoshi, Appl. Phys. Lett. 58, 1010 (1991)CrossRefGoogle Scholar
  11. 11.
    M. Shigekazu, K. Masahiko, Characterization of OMVPE—grown A1GaInP by optical spectroscopy. SPIE Modulation Spectroscopy 1286, 74–84 (1990)CrossRefGoogle Scholar
  12. 12.
    R.M. Fletcher, C.P. Kuo, T.D. Osentowski, V.M. Robbins, US Patent No. 5,008,718 (1991)Google Scholar
  13. 13.
    H. Sugawara, M. Ishikawa, Y. Kokubun, Y. Nishikawa, S. Naritsuka, US Patent No. 5,048,035 (1991)Google Scholar
  14. 14.
    S. Illek, U. Jacob, A. Ploessl, P. Strauss, K. Streubel, W. Wegleiter, R. Wirth, Compound Semicond. 8, 39 (2002)Google Scholar
  15. 15.
    T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, S. Shibata, J. Cryst. Growth 107, 832 (1991)CrossRefGoogle Scholar
  16. 16.
    C.H.E.N. Yi-Xin, S.H.E.N. Guang-Di, et al., Efficiency-enhanced AlGaInP light-emitting diodes with thin window layers and coupled distributed bragg reflectors. Chin. Phys. Lett. 28(6), 067806 (2011)CrossRefGoogle Scholar
  17. 17.
    H.J. Lee, Y.J. Kim, S.U. Kim, et al., Efficiency improvement of 630 nm AlGaInP light-emitting diodes based on AlGaAs bottom window. Jpn. J. Appl. Phys. 52, 102101 (2013)CrossRefGoogle Scholar
  18. 18.
    H.W. Deckman, J.H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982)CrossRefGoogle Scholar
  19. 19.
    N. Linder, S. Kugler, P. Strauss, R. Wirth, H. Zull, K.P. Streubel, High-brightness AlGaInP light emitting diodes using surface texturing. Proc. SPIE 4278, 19–25 (2001)CrossRefGoogle Scholar
  20. 20.
    Y.J. Lee, H.C. Kuo, S.C. Wang, T.C. Hsu, M.H. Hsieh, M.J. Jou, B.J. Lee, Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening. IEEE Photon. Technol. Lett. 17(11), 2289–2291 (2005)CrossRefGoogle Scholar
  21. 21.
    F.A. Kish et al., Appl. Phys. Lett. 64, 2839 (1994)CrossRefGoogle Scholar
  22. 22.
    G.E. Hoefler, D. Vanderwater, D.C. DeFevere, F.A. Kish, M. Camras, F. Steranka, I.-H. Tan, Appl. Phys. Lett. 69, 803 (1996)CrossRefGoogle Scholar
  23. 23.
    I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, Appl. Phys. Lett. 62, 131 (1993)CrossRefGoogle Scholar
  24. 24.
    N.F. Gardner, H.C. Chui, E.I. Chen, M.R. Krames, J.-W. Huang, F.A. Kish, S.A. Stockman, C.P. Kocot, T.S. Tan, N. Moll, Appl. Phys. Lett. 74, 2230 (1999)CrossRefGoogle Scholar
  25. 25.
    M.R. Krames, M. Ochiai-Holcomb, G.E. Höfler, et al., High-power truncated-inverted-pyramid (AlχGa1−χ)0.5In0.5P light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. 75(16), 2365–2367 (1999)CrossRefGoogle Scholar
  26. 26.
    Z. Jian-Ming, Z. De-Shu, X. Chen, et al., AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact. Chin. Phys. Soc. 16(11), 3498 (2007)CrossRefGoogle Scholar
  27. 27.
    K. Bergenek et al., Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals. Appl. Phys. Lett. 93, 041105 (2008)CrossRefGoogle Scholar
  28. 28.
    W. Fan-Lei, O. Sin-Liang, Y.-C. Kao, et al., Thin-film vertical-type AlGaInP LEDs fabricated by epitaxial lift-off process via the patterned design of Cu substrate. Opt. Express 23(14), 18156–18165 (2015)CrossRefGoogle Scholar
  29. 29.
    M.-C. Tseng, C.-L. Chen, N.-K. Lai, et al., P-side-up thin-film AlGaInP-based light emitting diodes with direct ohmic contact of an ITO layer with a GaP window layer. Opt. Express 22(S7), A1862–A1867 (2014)CrossRefGoogle Scholar
  30. 30.
    Y.C. Lee, H.C. Kuo, C.E. Lee, T.C. Lu, S.C. Wang, IEEE Photon. Technol. Lett. 20, 23 (2008)Google Scholar
  31. 31.
    A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, M.S. Shur, Optimization of white polychromatic semiconductor lamps. Appl. Phys. Lett. 80, 234–236 (2002)CrossRefGoogle Scholar
  32. 32.
    Y. Ohno, Spectral design considerations for white LED color rendering. Opt. Eng. 44, 111302 (2005)CrossRefGoogle Scholar
  33. 33.
    K.A. Bulashevich, A.V. Kulik, S.Y. Karpov, Optimal ways of colour mixing for high quality white light LED sources. Phys. Status Solidi A 212, 914–919 (2015)CrossRefGoogle Scholar
  34. 34.
    J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, J.Y. Tsao, Research challenges to ultra-efficient inorganic solid-state lighting. Laser Photonics Rev. 1, 307–333 (2007)CrossRefGoogle Scholar
  35. 35.
    J.Y. Tsao, M.E. Coltrin, M.H. Crawford, J.A. Simmons, Solid-state lighting: an integrated human factors, technology and economic perspective. Proc. IEEE 98, 1162–1179 (2009)CrossRefGoogle Scholar
  36. 36.
    Lumileds, LUXEON Rebel Color Line Datasheet (2017). Accessed 31 May 2017
  37. 37.
    Y. Ohno, in Color rendering and luminous efficacy of white LED spectra. Calculations based on white light simulator (2004)Google Scholar
  38. 38.
    DOE SSL Program, in Suggested Research Topics Supplement: Technology and Market Context, ed. by J. Brodrick (2017)Google Scholar
  39. 39.
    T. Gessmann, E.F. Schubert, High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications. J. Appl. Phys. 95, 2203–2216 (2004)CrossRefGoogle Scholar
  40. 40.
    G. Chen et al., Performance of high-power III-nitride light emitting diodes. Phys. Status Solidi A 205, 1086–1092 (2008)CrossRefGoogle Scholar
  41. 41.
    J. Day et al., III-nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011)CrossRefGoogle Scholar
  42. 42.
    C.-M. Kang, S.-J. Kang, S.-H. Mun, et al., Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission. Sci. Rep. 7(1), 10333 (2017)CrossRefGoogle Scholar
  43. 43.
    D. Karunatilaka, F. Zafar, V. Kalavally, R. Parthiban, LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutorials 17(3), 1649–1678 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Tanaka, T. Komine, S. Haruyama, M. Nakagawa, Indoor visible light data transmission system utilizing white LED lights. IEICE Trans. Commun. 86(8), 2440–2454 (2003)Google Scholar
  45. 45.
    J. Vucic, C. Kottke, K. Habel, K.D. Langer, in Proc. OFC/NFOEC, Los Angeles, CA, USA. 803 mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary (2011), pp. 1–3Google Scholar
  46. 46.
    O.H. Hwa Sub, J.O.O. Jee Hue, L.E.E. Jin Hong, et al., Structural optimization of high-power AlGaInP resonant cavity light-emitting diodes for visible light communications. Jpn. J. Appl. Phys. 47(8), 6214 (2008)CrossRefGoogle Scholar
  47. 47.
    C. Xinlian, K. Fanmin, k. Li, et al., Study of light extraction efficiency of flip-chip GaN based LEDs with different periodic arrays [J]. Opt. Commun. 314, 90–96 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Shinji, H. Rei, H. Jongil, et al., InGaN light emitting diodes on c-face sapphire substrates in green gap spectral range [J]. Appl. Phys. Express 6(11), 111004 (2013)CrossRefGoogle Scholar
  49. 49.
    O. Jeong Rok, C. Sang-Hwan, O. Ji Hye, et al., The realization of a whole palette of colors in a green gap by monochromatic phosphor-converted light-emitting diodes [J]. Opt. Express 19(5), 4188–4198 (2011)CrossRefGoogle Scholar
  50. 50.
    J. Davies Matthew, D. Philip, C.-P. Massabuau Fabien, et al., The effects of varying threading dislocation density on the optical properties of InGaN/GaN quantum wells [J]. Phys. Status Solidi C 11, 750–753 (2014)CrossRefGoogle Scholar
  51. 51.
    J.L. Zhang, F.Y. Jiang, J.L. Liu, et al., Study on Epitaxial Growth and Device Characterization of GaN Based Yellow Light-Emitting Diodes on Si Substrate (Nanchang University, Nanchang, 2014), pp. 3–11Google Scholar
  52. 52.
    Steve Bush, Osram starts to bridge green gap (2015). Scholar
  53. 53.
    C.H. Wang, C.C. Ke, C.Y. Lee, et al., Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer [J]. Appl. Phys. Lett. 97(26), 261103 (2010)CrossRefGoogle Scholar
  54. 54.
    G. Wei, Z. Fan, M. Morteza, et al., Auger recombination in III-nitride nanowires and its effect on nanowire light-emitting diode characteristics [J]. Nano Lett. 11(4), 1434–1438 (2011)CrossRefGoogle Scholar
  55. 55.
    C.H. Wang, J.R. Chen, C.H. Chiu, et al., Temperature-dependent electroluminescence efficiency in blue InGaN-GaN light-emitting diodes with different well widths [J]. IEEE Photon. Technol. Lett. 22(4), 236–238 (2010)CrossRefGoogle Scholar
  56. 56.
    J.L. Zhang, F.Y. Jiang, J.L. Liu, et al., Study on Epitaxial Growth and Device Characterization of GaN Based Yellow Light-Emitting Diodes on Si Substrate (Nanchang University, Nanchang, 2014), p. 15Google Scholar
  57. 57.
    J.R. Chen, Y.C. Wu, S.C. Ling, et al., Investigation of wavelength dependent efficiency droop in InGaN light emitting diodes [J]. Appl. Phys. B 98(4), 779–789 (2010)CrossRefGoogle Scholar
  58. 58.
    S. Dong-Soo, H. Dong-Pyo, O. Ji-Yeon, et al., Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence [J]. Appl. Phys. Lett. 100(15), 153506 (2012)CrossRefGoogle Scholar
  59. 59.
    N. Shuji, S. Masayuki, I. Naruhito, et al., High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures [J]. Jpn. J. Appl. Phys. 34(Part 2, 7A), L797 (1995)Google Scholar
  60. 60.
    F. Mitsuru, U. Masaya, K. Yoichi, et al., Blue, green and amber InGaN/GaN light-emitting diodes on semi polar {11-22} GaN bulk substrates [J]. Jpn. J. Appl. Phys. 45(26), L659 (2006)CrossRefGoogle Scholar
  61. 61.
    S. Hitoshi, B. Chung Roy, H. Hirohiko, et al., Optical properties of yellow light-emitting diodes grown on semi polar (11-22) bulk GaN substrates [J]. Appl. Phys. Lett. 92(22), 221110–221113 (2008)CrossRefGoogle Scholar
  62. 62.
    Y. Shuichiro, Z. Yuji, P. Chih-Chien, et al., High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semi polar (20-21) GaN substrates [J]. Appl. Phys. Express 3(12), 122102 (2010)CrossRefGoogle Scholar
  63. 63.
    P. Il-Kyu, K. Min-Ki, B. Sung-Ho, et al., Enhancement of phase separation in the InGaN layer for self-assembled in-rich quantum dots [J]. Appl. Phys. Lett. 87(6), 061906 (2005)CrossRefGoogle Scholar
  64. 64.
    C.B. Soh, W. Liu, H. Hartono, et al., Enhanced optical performance of amber emitting quantum dots incorporated InGaN/GaN light-emitting diodes with growth on UV-enhanced electrochemically etched nanoporous GaN [J]. Appl. Phys. Lett. 98(19), 191906 (2011)CrossRefGoogle Scholar
  65. 65.
    L. Wenbin, W. Lai, W. Jiaxing, et al., InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers [J]. Nanoscale Res. Lett. 7(1), 1–8 (2012)CrossRefGoogle Scholar
  66. 66.
    S.L. Delage, D. Christian, Wide band gap semiconductor reliability: status and trends [J]. Microelectron. Reliab. 43(9–11), 1705–1712 (2003)CrossRefGoogle Scholar
  67. 67.
    K. Ryosuke, K. Toshiyuki, S. Atushi, et al., Realization of extreme light extraction efficiency for moth-eye LEDs on SiC substrate using high-reflection electrode [J]. Phys. Status Solidi C 7(7–8), 2180–2182 (2010)Google Scholar
  68. 68.
    P. Chen, R. Zhang, Z.M. Zhao, et al., Growth of high quality GaN layers with AlN buffer on Si (111) substrates [J]. J. Cryst. Growth 225(2), 150–154 (2001)CrossRefGoogle Scholar
  69. 69.
    L. Junlin, z. Jianli, M. Qinghua, et al., Effects of AlN interlayer on growth of GaN-based LED on patterned silicon substrate [J]. CrystEngComm 15(17), 3372–3376 (2013)CrossRefGoogle Scholar
  70. 70.
    J.L. Zhang, F.Y. Jiang, J.L. Liu, et al., Study on Epitaxial Growth and Device Characterization of GaN Based Yellow Light-Emitting Diodes on Si Substrate (Nanchang University, Nanchang, 2014), p. 16Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Guohong Wang
    • 1
    • 2
    • 3
    Email author
  • Xiaoyan Yi
    • 1
    • 2
    • 3
  • Teng Zhan
    • 1
    • 2
    • 3
  • Yang Huang
    • 1
    • 2
    • 3
  1. 1.Semiconductor Lighting Technology Research and Development CenterInstitute of Semiconductors, Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Solid State LightingBeijingChina
  3. 3.Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and ApplicationBeijingChina

Personalised recommendations