Advertisement

Homoepitaxy of GaN Light-Emitting Diodes

  • Ke XuEmail author
  • Miao Wang
  • Taofei Zhou
  • Jianfeng Wang
Chapter
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)

Abstract

Light-emitting diodes (LEDs) employing heterostructures of group-III nitrides are a prime contender for the realization of energy-efficient solid-state lighting (US Department of Energy, Solid-State Lighting Program, http://www.netl.doe.gov/ssl; Basic Research Needs or Solid-State Lighting, Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22–24, 2006. www.sc.doe.gov/bes/reports/files/SSL_rpt.Pdf). As a direct bandgap material, alloys of GaxInxN can be tuned to emit light covering every portion of the visible spectrum. White light of good color-rendering quality (additive white) requires a more or less continuous spectrum and can be obtained by the combination of various such light sources. On the other hand, image information encoded in red-green-blue (RGB) colors can be reproduced by three highly monochromatic light sources of red, green, and blue. Current best practices in LED lighting employ blue or near-UV LEDs to excite a phosphor that downconverts those photons into longer wavelength light dependent on the phosphor chemistry and composition. The more efficient approach employs LEDs that emit directly at the target wavelength and thereby bypass the energy loss of downconversion. Even in the ideal case of 100% quantum efficiency, this downconversion from the blue to the green amounts to a 20% energy loss. Of particular interest therefore are high efficiency LEDs in the green (525 nm) and deep green (555 nm) spectral region.

Current technology primarily employs heteroepitaxial metalorganic vapor phase epitaxy (MOVPE) of AlGaInN alloys on dissimilar substrates like sapphire or SiC resulting in high densities of threading dislocations. In heteroepitaxial GaN, threading dislocations as high as 109–1011 cm2 are commonplace (Ponce et al., Appl Phys Lett 69:770, 1996) unless specialized multistep regrowth methods are being applied (Usui et al., Jpn J Appl Phys 36: L899, 1997; Nam et al., Appl Phys Lett 71:2638, 1997; Iwaya et al., Jpn J Appl Phys 37:L316, 1998). This typically results in high densities of threading dislocations that are extremely difficult to prevent from penetrating the active quantum well (QW) region. The considered roles of those defects range from electrically active donor centers (Leung et al., Appl Phys Lett 74:2495, 1999), highly active non-radiative recombination centers (Rosner et al., Appl Phys Lett 70:420, 1997), over mid-gap trap states assisting charge tunneling (Monemar and Sernelius, Appl Phys Lett 91:181103, 2007), and seeds for V-defects (Wu et al., Appl Phys Lett 72:692, 1998; Wetzel et al., Appl Phys Lett 85:866, 2004), to pathways of metal impurity electromigration and acceptor diffusion.

Promising therefore are freestanding GaN templates or bulk wafers that can be grown by hydride vapor phase epitaxy with a low threading-dislocation densities typically in the mid 106 cm2 (Hanser et al., Proceedings of the CS MANTECH Conference, April 24–27, Vancouver, British Columbia,Canada, 2006) or lower. Large area substrates for homoepitaxial growth of GaN layers have recently become available as a result of recent progress in production of thick freestanding GaN (FS-GaN) layers grown by hydride vapor-phase epitaxy (HVPE) (Kelly et al., Jpn J Appl Phys 38:L217–L219, 1999; Jasinski et al., Appl Phys Lett 78:2297–2299, 2001; Chao et al., Appl Phys Lett 95:051905–051905-3, 2009). Such substrates have been successfully applied to grow LED structures using metal-organic chemical vapor deposition (MOCVD) (Miskys et al., Appl Phys Lett 77:1858–1860, 2000), resulting in high-quality films, as demonstrated by their superior optical and electrical characteristics.

In this chapter, we discuss the progress in growth of bulk GaN by HVPE; the main challenges and solutions of HVPE growth method, including dislocation reduction, strain control, and doping of GaN; structural characterization, electrical characterization, and optical characterization of homoepitaxial InGaN/GaN light-emitting diodes; efficiency droop and efficiency enhancement; and light efficiency extraction of homoepitaxial InGaN/GaN light-emitting diodes. Meanwhile, nonpolar and semipolar orientations GaN LED grown on bulk GaN substrates also have been investigated.

References

  1. 1.
    T. Paskova, D.A. Hanser, K.R. Evans, Proc. IEEE 98, 1324 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Yamane, M. Shimada, S.J. Clarke, F.J. DiSalvo, Chem. Mater. 9, 413 (1997)CrossRefGoogle Scholar
  3. 3.
    M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Lourdudoss, N. Gopalakrishnan, R. Holz, M. Deschler, R. Beccard, Value-Addition Metall. 177 (1998)Google Scholar
  5. 5.
    H. Murakami, J. Kikuchi, Y. Kumagai, A. Koukitu, Phys. Status Solidi C 3, 1457 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Koukitu, S. Hama, T. Taki, H. Seki, Jpn. J. Appl. Phys. 37, 762 (1998)CrossRefGoogle Scholar
  7. 7.
    A. Koukitu, J. Kikuchi, Y. Kangawa, Y. Kumagai, J. Cryst. Growth 281, 47 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Kumagai, K. Takemoto, T. Hasegawa, A. Koukitu, H. Seki, J. Cryst. Growth 231, 57 (2001)CrossRefGoogle Scholar
  9. 9.
    A. Usui, H. Sunakawa, A. Sakai, A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997)CrossRefGoogle Scholar
  10. 10.
    K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, Phys. Status Solidi A 176, 535 (1999)CrossRefGoogle Scholar
  11. 11.
    Y. Kawaguchi, S. Nambu, H. Sone, M. Yamaguchi, H. Miyake, K. Hiramatsu, N. Sawaki, Y. Iyechika, T. Maeda, Mrs Internet, J. Nitride Semicond. Res. 4, G4.1 (1999)Google Scholar
  12. 12.
    Y. Kawaguchi, S. Nambu, M. Yamaguchi, N. Sawaki, H. Miyake, K. Hiramatsu, K. Tsukamoto, N. Kuwano, K. Oki, Phys. Status Solidi A 176, 561 (1999)CrossRefGoogle Scholar
  13. 13.
    Y. Kawaguchi, Y. Honda, M. Yamaguchi, N. Sawaki, K. Hiramatsu, Phys. Status Solidi A 176, 553 (1999)CrossRefGoogle Scholar
  14. 14.
    Z. Yu, H.M.A.L. Johnson, J.D. Brown, N.A. El-Masry, J.F. Muth, J.W. Cook, J.F. Schetzina, K.W. Haberern, H.S. Kong, J.S. Edmond, Mrs Internet, J. Nitride Semicond. Res. 4, G4.3 (1999)Google Scholar
  15. 15.
    F. Yun, Y.T. Moon, Y. Fu, K. Zhu, U. Ozgur, H. Morkoc, C.K. Inoki, T.S. Kuan, A. Sagar, R.M. Feenstra, J. Appl. Phys. 98(8), 123502 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Nagahama, N. Iwasa, M. Senoh, T. Matsushita, Y. Sugimoto, H. Kiyoku, T. Kozaki, M. Sano, H. Matsumura, H. Umemoto, K. Chocho, T. Mukai, Jpn. J. Appl. Phys. 39, L647 (2000)CrossRefGoogle Scholar
  17. 17.
    K. Motoki, T. Okahisa, S. Nakahata, N. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, H. Seki, J. Cryst. Growth 237, 912 (2002)CrossRefGoogle Scholar
  18. 18.
    K. Motoki, T. Okahisa, S. Nakahata, A. Matsumoto, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, M. Ueno, Y. Kumagai, A. Koukitu, H. Seki, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 93, 123 (2002)CrossRefGoogle Scholar
  19. 19.
    K. Motoki, T. Okahisa, R. Hirota, S. Nakahata, K. Uematsu, N. Matsumoto, J. Cryst. Growth 305, 377 (2007)CrossRefGoogle Scholar
  20. 20.
    Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003)CrossRefGoogle Scholar
  21. 21.
    J.Q. Liu, J. Huang, X.J. Gong, J.F. Wang, K. Xu, Y.X. Qiu, D.M. Cai, T.F. Zhou, G.Q. Ren, H. Yang, CrystEngComm 13, 5929 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 311, 3011 (2009)CrossRefGoogle Scholar
  23. 23.
    S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys. 31, 2883 (1992)CrossRefGoogle Scholar
  24. 24.
    A.V. Fomin, A.E. Nikolaev, I.P. Nikitina, A.S. Zubrilov, M.G. Mynbaeva, N.I. Kuznetsov, A.P. Kovarsky, B.J. Ber, Phys. Status Solidi A 188, 433 (2001)CrossRefGoogle Scholar
  25. 25.
    E. Richter, C. Hennig, U. Zeimer, L. Wang, M. Weyers, G. Tränkle, Phys. Status Solidi (a) 203, 1658 (2006)CrossRefGoogle Scholar
  26. 26.
    N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)CrossRefGoogle Scholar
  27. 27.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.Y. Pashkova, J. Kim, F. Ren, M.E. Overberg, G.T. Thaler, C.R. Abernathy, S.J. Pearton, R.G. Wilson, J. Appl. Phys. 92, 3130 (2002)CrossRefGoogle Scholar
  28. 28.
    E. Malguth, A. Hoffmann, W. Gehlhoff, O. Gelhausen, M.R. Phillips, X. Xu, Phys. Rev. B 74, 165202 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Monemar, O. Lagerstedt, J. Appl. Phys. 50, 6480 (1979)CrossRefGoogle Scholar
  30. 30.
    R.P. Vaudo, X.P. Xu, A. Salant, J. Malcarne, G.R. Brandes, Phys. Status Solidi A 200, 18 (2003)CrossRefGoogle Scholar
  31. 31.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.V. Pashkova, A.A. Shlensky, S.J. Pearton, M.E. Overberg, C.R. Abernathy, J.M. Zavada, R.G. Wilson, J. Appl. Phys. 93, 5388 (2003)CrossRefGoogle Scholar
  32. 32.
    M. Kubota, T. Onuma, Y. Ishihara, A. Usui, A. Uedono, S.F. Chichibu, J. Appl. Phys. 105, 083542 (2009)CrossRefGoogle Scholar
  33. 33.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, S.J. Pearton, Appl. Phys. Lett. 83, 3314 (2003)CrossRefGoogle Scholar
  34. 34.
    Y.M. Fan, Z.H. Liu, G.Z. Xu, H.J. Zhong, Z.L. Huang, Y.M. Zhang, J.F. Wang, K. Xu, Appl. Phys. Lett. 105, 062108 (2014)CrossRefGoogle Scholar
  35. 35.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, T.G. Yugova, A.V. Markov, A.M. Dabiran, A.M. Wowchak, B. Cui, J. Xie, A.V. Osinsky, P.P. Chow, S.J. Pearton, Appl. Phys. Lett. 92, 042110 (2008)CrossRefGoogle Scholar
  36. 36.
    A. Bonanni, M. Kiecana, C. Simbrunner, T. Li, M. Sawicki, M. Wegscheider, M. Quast, H. Przybylinska, A. Navarro-Quezada, R. Jakiela, A. Wolos, W. Jantsch, T. Dietl, Phys. Rev. B 75, 125210 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Bonanni, A. Navarro-Quezada, T. Li, M. Wegscheider, Z. Matej, V. Holy, R.T. Lechner, G. Bauer, M. Rovezzi, F. D’Acapito, M. Kiecana, M. Sawicki, T. Dietl, Phys. Rev. Lett. 101, 135502 (2008)CrossRefGoogle Scholar
  38. 38.
    D.O. Dumcenco, S. Levcenco, Y.S. Huang, C.L. Reynolds, J.G. Reynolds, K.K. Tiong, T. Paskova, K.R. Evans, J. Appl. Phys. 109, 123508 (2011)CrossRefGoogle Scholar
  39. 39.
    J.M. Langer, H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)CrossRefGoogle Scholar
  40. 40.
    R. Heitz, P. Maxim, L. Eckey, P. Thurian, A. Hoffmann, I. Broser, K. Pressel, B.K. Meyer, Phys. Rev. B 55, 4382 (1997)CrossRefGoogle Scholar
  41. 41.
    M. Zhang, T.F. Zhou, Y.M. Zhang, B. Li, S.N. Zheng, J. Huang, Y.P. Sun, G.Q. Ren, J.F. Wang, K. Xu, H. Yang, Appl. Phys. Lett. 100, 041904 (2012)CrossRefGoogle Scholar
  42. 42.
    L. Chernyak, A. Osinsky, A. Schulte, Solid State Electron. 45, 1687 (2001)CrossRefGoogle Scholar
  43. 43.
    P. Scajev, K. Jarasiunas, S. Okur, U. Ozgur, H. Morkoc, J. Appl. Phys. 111, 023702 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Reshchikov, A.M. Foussekis, A.A. Baski, J. Appl. Phys. 107, 113535 (2010)CrossRefGoogle Scholar
  45. 45.
    D. Wee, G. Parish, B. Nener, J. Appl. Phys. 111, 074503 (2012)CrossRefGoogle Scholar
  46. 46.
    A. Cavallini, L. Polenta, A. Castaldini, Microelectron. Reliab. 50, 1398 (2010)CrossRefGoogle Scholar
  47. 47.
    Z.H. Liu, K. Xu, Y.M. Fan, G.Z. Xu, Z.L. Huang, H.J. Zhong, J.F. Wang, H. Yang, Appl. Phys. Lett. 101, 252107 (2012)CrossRefGoogle Scholar
  48. 48.
    F.A. Ponce, D. Cherns, W.T. Young, J.W. Steeds, Appl. Phys. Lett. 69, 770 (1996)CrossRefGoogle Scholar
  49. 49.
    C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J.S. Nelson, Appl. Phys. Lett. 85, 866 (2004)CrossRefGoogle Scholar
  50. 50.
    O. Nam, M. Bremser, T. Zheleva, R. Davis, Appl. Phys. Lett. 71, 2638 (1997)CrossRefGoogle Scholar
  51. 51.
    C. Mion, J.F. Muth, E.A. Preble, D. Hanser, Appl. Phys. Lett. 89, 092123 (2006)CrossRefGoogle Scholar
  52. 52.
    X.H. Wu, C.R. Elsass, A. Abare, M. Mack, S. Keller, P.M. Petroff, S.P. DenBaars, J.S. Speck, S.J. Rosner, Appl. Phys. Lett. 72, 692 (1998)CrossRefGoogle Scholar
  53. 53.
    T. Detchprohm, Y. Xia, Y. Xi, M. Zhu, W. Zhao, Y. Li, E.F. Schubert, L. Liu, D. Tsvetkov, D. Hanser, C. Wetzel, J. Cryst. Growth 298, 272 (2007)CrossRefGoogle Scholar
  54. 54.
    A.D. Hanser, L. Liu, E.A. Preble, D. Tsvetkov, M. Tutor, N.M. Williams, K. Evans, Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, D.F. Storm, D.S. Katzer, S.C. Binari, J.A. Roussos, J.A. Mittereder, Proceedings of the CS MANTECH Conference, April 24–27, Vancouver, BC, Canada, (2006)Google Scholar
  55. 55.
    M.K. Kelly, R.P. Vaudo, V.M. Phanse, L. Görgens, O. Ambacher, M. Stutzmann, Jpn. J. Appl. Phys. 38, L217–L219 (1999)CrossRefGoogle Scholar
  56. 56.
    J. Jasinski, W. Swider, Z. Liliental-Weber, P. Visconti, K.M. Jones, M.A. Reshchikov, F. Yun, H. Morkoç, S.S. Park, K.Y. Lee, Appl. Phys. Lett. 78, 2297–2299 (2001)CrossRefGoogle Scholar
  57. 57.
    C.L. Chao, C.H. Chiu, Y.J. Lee, H.C. Kuo, P.-C. Liu, J.D. Tsay, S.J. Cheng, Appl. Phys. Lett. 95, 051905–051905–3 (2009)CrossRefGoogle Scholar
  58. 58.
    T. Detchprohm, H. Amano, K. Hiramatsu, I. Akasaki, Appl. Phys. Lett. 61, 2688 (1992)CrossRefGoogle Scholar
  59. 59.
    S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, H.I. Erikson, Appl. Phys. Lett. 70, 420 (1997)CrossRefGoogle Scholar
  60. 60.
    D. Hanser, L. Liu, E.A. Preble, D. Thomas, M. Williams, Mater. Res. Soc. 798, Y2.1.1 (2004)Google Scholar
  61. 61.
    K. Lee, K. Auh, MRS Internet, J. Nitride Semicond. Res. 6, 9 (2001)CrossRefGoogle Scholar
  62. 62.
    C.R. Miskys, M.K. Kelly, O. Ambacher, G. Martínez-Criado, M. Stutzmann, Appl. Phys. Lett. 77, 1858–1860 (2000)CrossRefGoogle Scholar
  63. 63.
    H. Yamada, K. Iso, M. Saito, H. Hirasawa, N. Fellows, H. Masui, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Phys. Status Solidi RRL 2(2), 89–91 (2008)CrossRefGoogle Scholar
  64. 64.
    J.P. Liu, J.B. Limb, J.-H. Ryou, D. Yoo, C.A. Horne, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, A.D. Hanser, L. Liu, E.A. Preble, K.R. Evans, Appl. Phys. Lett. 92(1), 011123 (2008)CrossRefGoogle Scholar
  65. 65.
    M. Funato, T. Kotani, T. Kondou, Y. Kawakami, Y. Narukawa, T. Mukai, Appl. Phys. Lett. 88(26), 261920 (2006)CrossRefGoogle Scholar
  66. 66.
    H. Yamada, K. Iso, M. Saito, H. Masui, K. Fujito, S.P. DenBaars, S. Nakamura, Appl. Phys. Express 1(4), 041101 (2008)CrossRefGoogle Scholar
  67. 67.
    M.C. Schmidt, K.C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S.P. DenBaars, J.S. Speck, Jpn. J. Appl. Phys., Part 2 46, L126 (2007)CrossRefGoogle Scholar
  68. 68.
    K.-C. Kim, M.C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S.P. DenBaars, J.S. Speck, K. Fujito, Appl. Phys. Lett. 91(18), 181120 (2007)CrossRefGoogle Scholar
  69. 69.
    K. Iso, H. Yamada, H. Hirasawa, N. Fellows, M. Saito, K. Fujito, S.P. DenBaars, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 46(36–40), L960–L962 (2007)CrossRefGoogle Scholar
  70. 70.
    H. Sato, R.B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 92(22), 221110 (2008)CrossRefGoogle Scholar
  71. 71.
    A. Tyagi, H. Zhong, N.N. Fellows, M. Iza, J.S. Speck, S.P. DenBaars, S. Nakamura, Jpn. J. Appl. Phys. 46(4–7), L129–L131 (2007)CrossRefGoogle Scholar
  72. 72.
    T. Detchprohm, M. Zhu, Y. Li, Y. Xia, C. Wetzel, E.A. Preble, L. Liu, T. Paskova, D. Hanser, Appl. Phys. Lett. 92, 241109 (2008)CrossRefGoogle Scholar
  73. 73.
    M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Jpn. J. Appl. Phys., Part 2 45, L659 (2006)CrossRefGoogle Scholar
  74. 74.
    H. Sato, A. Tyagi, H. Zhong, N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Phys. Status Solidi RRL 1(4), 162–164 (2007)CrossRefGoogle Scholar
  75. 75.
    H. Masui, S. Nakamura, S.P. DenBaars, U.K. Mishra, IEEE Trans. Electron Dev. 57(1), 88–100 (2010)CrossRefGoogle Scholar
  76. 76.
    M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 37, L316 (1998)CrossRefGoogle Scholar
  77. 77.
    J. Jasinski, Z. Liliental-Weber, D. Huang, M.A. Reshchikov, F. Yun, H. Morkoc, C. Sone, S.S. Park, K.Y. Lee, Mater. Res. Soc. 722, K3.1.1 (2002)Google Scholar
  78. 78.
    M. Zhu, Y. Xia, W. Zhao, Y. Li, J. Senawiratne, T. Detchprohm, C. Wetzel, Journal of Elec Materi 37(5), 641–645 (2008)CrossRefGoogle Scholar
  79. 79.
    Z. Liliental-Weber, J. Washburn, K. Pakula, J. Baranowski, Microsc. Microanal. 3, 436 (1997)Google Scholar
  80. 80.
    H.K. Cho, J.Y. Lee, G.M. Yang, Appl. Phys. Lett. 80, 1370 (2002)CrossRefGoogle Scholar
  81. 81.
    T. Mukai, S. Nakamura, Jpn. J. Appl. Phys., Part 1(38), 5735 (1999)CrossRefGoogle Scholar
  82. 82.
    X.A. Cao, S.F. LeBoeuf, L.B. Rowland, C.H. Yan, H. Liu, Appl. Phys. Lett. 82, 3614 (2003)CrossRefGoogle Scholar
  83. 83.
    P.G. Eliseev, P. Perlin, J. Furioli, P. Sartori, J. Mu, M. Osinski, J. Electron. Mater. 26, 311 (1997)CrossRefGoogle Scholar
  84. 84.
    X.A. Cao, K. Topol, F. Shahedipour, J. Teetsov, P.M. Sandvik, S.F. eBoeuf, A. Ebong, J. Kretchmer, E.B. Stokes, S. Arthur, A.E. Kaloyeros, n.D. Walker, Proc. SPIE 4776, 105 (2002)CrossRefGoogle Scholar
  85. 85.
    K. Leung, A.F. Wright, E.B. Stechel, Appl. Phys. Lett. 74, 2495 (1999)CrossRefGoogle Scholar
  86. 86.
    B. Monemar, B.E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007)CrossRefGoogle Scholar
  87. 87.
    C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui, A. Asakai, J. Ryst. Growth 189/190, 61 (1998)CrossRefGoogle Scholar
  88. 88.
    C.Y. Hsu, W.H. Lan, Y.S. Wu, Appl. Phys. Lett. 83, 2447 (2003)CrossRefGoogle Scholar
  89. 89.
    X.A. Cao, P.M. Sandvik, S.F. LeBoeuf, S.D. Arthur, Microelectron. Eliab. 43, 1987 (2003)CrossRefGoogle Scholar
  90. 90.
    X.A. Cao, J.M. Teetsov, M.P. D’Evelyn, D.W. Merfeld, C.H. Yan, Appl. Phys. Lett. 85(1), 7–9 (2004)CrossRefGoogle Scholar
  91. 91.
    X.A. Cao, H. Lu, E.B. Kaminsky, S.D. Arthur, J.R. Grandusky, F. Shahedipour-Sandvik, J. Cryst. Growth 300(2), 382–386 (2007). ISSN 0022-0248CrossRefGoogle Scholar
  92. 92.
    R.P. Vaudo, X. Xu, C. Lario, A.D. Salant, J.S. Flynn, G.R. Brandes, Phys. Status Solidi A 194, 494 (2002)CrossRefGoogle Scholar
  93. 93.
    X. Xu, R.P. Vaudo, C. Loria, A. Salant, G.R. Brandes, J. Chaudhuri, J. Crystal Growth 246, 223 (2002)CrossRefGoogle Scholar
  94. 94.
    X.A. Cao, E.B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, D. Walker, Solid State Electron. 46, 1235 (2002)CrossRefGoogle Scholar
  95. 95.
    I. Arslan, N.D. Browning, Phys. Rev. Lett. 91, 165501 (2003)CrossRefGoogle Scholar
  96. 96.
    T. Matsuoka, J. Cryst. Growth 189/190, 19–23 (1998)CrossRefGoogle Scholar
  97. 97.
    A. Koukitu, Y. Kumagai, J. Phys. Condens. Matter 13(32), 6907–6934 (2001)CrossRefGoogle Scholar
  98. 98.
    S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5(10), 810–816 (2006)CrossRefGoogle Scholar
  99. 99.
    I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94(6), 3675–3696 (2003)CrossRefGoogle Scholar
  100. 100.
    A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100(2), 023522 (2006)CrossRefGoogle Scholar
  101. 101.
    T. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 39(2A), 413–416 (2000)CrossRefGoogle Scholar
  102. 102.
    H.M. Otte, A.G. Crocker, Phys. Status Solidi B 9(2), 441–450 (1965)CrossRefGoogle Scholar
  103. 103.
    F.C. Frank, Acta Crystallogr. 18, 862–866 (1965)CrossRefGoogle Scholar
  104. 104.
    J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York, 1985)zbMATHGoogle Scholar
  105. 105.
    H. Masui, S.C. Cruz, S. Nakamura, S.P. DenBaars, J. Electron. Mater. 68(6), 756–760 (2009).  https://doi.org/10.1007/s11664-009-0777-4 CrossRefGoogle Scholar
  106. 106.
    U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008), pp. 67–72Google Scholar
  107. 107.
    T. Takeuchi, S. Lester, D. Basile, G. Girolami, R. Twist, F. Mertz, M. Wong, R. Schneider, H. Amano, I. Akasaki, IPAP Conf. Ser. 1, 137 (2000)Google Scholar
  108. 108.
    A. Chakraborty, T.J. Baker, B.A. Haskell, F. Wu, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys., Part 2 44, L945 (2005)CrossRefGoogle Scholar
  109. 109.
    A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys., Part 2 44, L173 (2005)CrossRefGoogle Scholar
  110. 110.
    K. Okamoto, H. Ohta, S.F. Chichibu, J. Ichihara, H. Takasu, Jpn. J. Appl. Phys., Part 2 46, L187 (2007)CrossRefGoogle Scholar
  111. 111.
    K. Fujito, K. Kiyomi, T. Mochizuki, H. Oota, H. Namita, S. Nagao, I. Fujimura, Phys. Status Solidi A 205(5), 1056–1059 (2008)CrossRefGoogle Scholar
  112. 112.
    K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, H. Takasu, Jpn. J. Appl. Phys. 45(45–45), L1 197–L1 199 (2006)CrossRefGoogle Scholar
  113. 113.
    Y.-D. Lin, A. Chakraborty, S. Brinkley, H.C. Kuo, T. Melo, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 94(26), 261108 (2009)CrossRefGoogle Scholar
  114. 114.
    A. Hirai, Z. Jia, M.C. Schmidt, R.M. Farrell, S.P. DenBaars, S. Nakamura, J.S. Speck, K. Fujito, Appl. Phys. Lett. 91(19), 191906 (2007)CrossRefGoogle Scholar
  115. 115.
    H. Yamada, K. Iso, H. Masui, M. Saito, K. Fujito, S.P. DenBaars, S. Nakamura, J. Cryst. Growth 310(23), 4968–4971 (2008)CrossRefGoogle Scholar
  116. 116.
    Y. Tsuda, M. Ohta, P.O. Vaccaro, S. Ito, S. Hirukawa, Y. Kawaguchi, Y. Fujishiro, Y. Takahira, Y. Ueta, T. Takakura, T. Yuasa, Appl. Phys. Express 1(1), 011104 (2008)CrossRefGoogle Scholar
  117. 117.
    H. Masui, S. Nakamura, Advances in Light Emitting Materials (Trans Tech, Zurich, 2008), pp. 211–231Google Scholar
  118. 118.
    H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 90(23), 233504 (2007)CrossRefGoogle Scholar
  119. 119.
    Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, T. Nakamura, Appl. Phys. Express 2(8), 082101 (2009)CrossRefGoogle Scholar
  120. 120.
    M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507–183507-3 (2007)CrossRefGoogle Scholar
  121. 121.
    S. Chichubu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 70, 2822–2824 (1997)CrossRefGoogle Scholar
  122. 122.
    S.F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumura, H. Nakanishi, T. Sota, T. Mukai, J. Vac. Sci. Technol. B 19, 2177–2183 (2001)CrossRefGoogle Scholar
  123. 123.
    Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007)CrossRefGoogle Scholar
  124. 124.
    X. Ni, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, J. Appl. Phys. 108, 033112–033112-13 (2010)CrossRefGoogle Scholar
  125. 125.
    Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E.F. Schubert, M.H. Crawford, D.D. Koleske, M.-H. Kim, Y. Park, Appl. Phys. Lett. 97, 133507–133507-3 (2010)CrossRefGoogle Scholar
  126. 126.
    J.H. Son, J.L. Lee, Opt. Express 18, 5466–5471 (2010)CrossRefGoogle Scholar
  127. 127.
    Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, S.-H. Yen, Appl. Phys. Lett. 95, 011116–011116-3 (2009)CrossRefGoogle Scholar
  128. 128.
    K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, K. Katayama, J. Appl. Phys. 101, 033104–033104–5 (2007)CrossRefGoogle Scholar
  129. 129.
    M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, D. Kouichiro, S. Masahiko, T. Mukai, Jpn. J. Appl. Phys. 41(12B), L1431 (2002)CrossRefGoogle Scholar
  130. 130.
    E. Schubert, Light Emitting Diodes, 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 93CrossRefGoogle Scholar
  131. 131.
    Y.J. Zhao, J. Sonoda, C.-C. Pan, S. Brinkley, I. Koslow, K. Fujito, H. Ohta, S.P. DenBaars, S. Nakamura, Appl. Phys. Express 3, 102101 (2010)CrossRefGoogle Scholar
  132. 132.
    Y.-K. Fu, B.-C. Chen, Y.-H. Fang, R.-H. Jiang, Y.-H. Lu, R. Xuan, K.-F. Huang, C.-F. Lin, Y.-K. Su, J.-F. Chen, C.-Y. Chang, IEEE Photon. Technol. Lett. 23(19), 1373–1375 (2011)CrossRefGoogle Scholar
  133. 133.
    S.E. Brinkley, C.L. Keraly, J. Sonoda, C. Weisbuch, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl. Phys. Express 5(3), 032104 (2012)CrossRefGoogle Scholar
  134. 134.
    B. Sun, L.X. Zhao, T.B. Wei, X.Y. Yi, Z.Q. Liu, G.H. Wang, J.M. Li, J. Appl. Phys. 113(24), 243104 (2013)CrossRefGoogle Scholar
  135. 135.
    T.B. Wei, K. Wu, Y. Chen, J. Yu, Q. Yan, Y.Y. Zhang, R. Duan, J. Wang, Y. Zeng, J.M. Li, IEEE Electron Device Lett. 33(6), 857–859 (2012)CrossRefGoogle Scholar
  136. 136.
    T. Wei, Z. Huo, Y. Zhang, H. Zheng, Y. Chen, J. Yang, Q. Hu, R. Duan, J. Wang, Y. Zeng, J. Li, Opt. Express 22, A1093–A1100 (2014)CrossRefGoogle Scholar
  137. 137.
    H. Zhong, A. Tyagi, N. Pfaff, M. Saito, K. Fujito, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 48(3R), 030201 (2009)CrossRefGoogle Scholar
  138. 138.
    M.R. Krames, M. Ochiai-Holcomb, G.E. Hofler, C. Carter-Coman, E.I. Chen, I.-H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.-W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T.S. Tan, C.P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, Appl. Phys. Lett. 75, 2365 (1999)CrossRefGoogle Scholar
  139. 139.
    C. Wiesmann, K. Bergenek, N. Linder, U.T. Schwarz, Laser Photon. Rev. 3(3), 262–286 (2009)CrossRefGoogle Scholar
  140. 140.
    Y.-J. Kim, M.-K. Kwon, K.-S. Lee, S.-J. Park, S.H. Kim, K.-D. Lee, Appl. Phys. Lett. 91(18), 181109 (2007)CrossRefGoogle Scholar
  141. 141.
    H.W. Huang, J.K. Huang, K.Y. Lee, C.F. Lin, H.C. Guo, IEEE Electron Device Lett. 31(6), 573–575 (2010)CrossRefGoogle Scholar
  142. 142.
    K.H. Li, H.W. Choi, J. Appl. Phys. 110(5), 053104 (2011)CrossRefGoogle Scholar
  143. 143.
    J. Jewell, D. Simeonov, S.-C. Huang, Y.-L. Hu, S. Nakamura, J. Speck, C. Weisbuch, Appl. Phys. Lett. 100(17), 171105 (2012)CrossRefGoogle Scholar
  144. 144.
    A. David, B. Moran, K. McGroddy, E. Matioli, E.L. Hu, S.P. DenBaars, S. Nakamura, C. Weisbuch, Appl. Phys. Lett. 92(11), 113514 (2008)CrossRefGoogle Scholar
  145. 145.
    D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang, C.F. Lin, R.H. Horng, Appl. Phys. Lett. 89(16), 161105 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of SciencesSuzhouChina

Personalised recommendations