The Effect and Mechanism of Light on the Growth, Food Intake, and Gonad Development of Atlantic Salmon (Salmo salar) Reared in RAS

  • Ying LiuEmail author
  • Xiaolong Gao
  • Liang Chi
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)


Atlantic salmon exhibit seasonal reproduction. However, the mechanisms governing this are still unclear. Generally speaking, kisspeptin has been recognized as a regulator of reproduction. Here, we report a relationship between kisspeptin, GnRH, and photoperiod in Atlantic salmon. The results demonstrated that the expression of the Atlantic salmon kisspeptinreceptor (skissr) was not always consistent with the expression pattern of Atlantic salmon GnRH3 (sGnRH3) during all developmental processes. Kisspeptin may exert its influence primarily in the early and later stages of gonad development by promoting the secretion of sGnRH3. Meanwhile, the expression levels of kissr were higher in fish with gonads at stage II and stage V under the long-day photoperiod regime than under the short-day regime. In addition, both skissr and sGnRH3 were also expressed in the saccus vasculosus (SV), an organ only found in fish. The SV might be a seasonal sensor regulating reproduction in addition to the hypothalamus (Hyp).


Atlantic salmon Kisspeptin GnRH Photoperiod 


  1. 1.
    S.B. Seminara, S. Messager, E.E. Chatzidaki, R.R. Thresher, J.S. Acierno Jr., J.K. Shagoury, et al., The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349(17), 1614–1627 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Messager, E.E. Chatzidaki, D. Ma, A.G. Hendrick, D. Zahn, J. Dixon, et al., Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl. Acad. Sci. U. S. A. 102(5), 1761–1766 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Funes, J.A. Hedrick, G. Vassileva, L. Markowitz, S. Abbondanzo, A. Golovko, et al., The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem. Biophys. Res. Commun. 312(4), 1357–1363 (2003)CrossRefGoogle Scholar
  4. 4.
    I.S. Parhar, S. Ogawa, Y. Sakuma, Laser-captured single digoxigenin-labeled neurons of gonadotropinreleasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology 145(8), 3613–3618 (2004)CrossRefGoogle Scholar
  5. 5.
    C.C. Martinez-Chavez, M. Minghetti, H. Migaud, GPR54 and rGnRH I gene expression during the onset of puberty in Nile tilapia. Gen. Comp. Endocrinol. 156(2), 224–233 (2008)CrossRefGoogle Scholar
  6. 6.
    B.H. Beck, S.A. Fuller, E. Peatman, M.E. McEntire, A. Darwish, D.W. Freeman, Chronic exogenous kisspeptin administration accelerates gonadal development in basses of the genus Morone. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 162(3), 265–273 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Zmora, J. Stubblefield, Z. Zulperi, J. Biran, B. Levavi-Sivan, J.-A. Muñoz-Cueto, et al., Differential and gonad stage-dependent roles of kisspeptin1 and kisspeptin2 in reproduction in the modern teleosts, morone species. Biol. Reprod. 86, 177 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Elizur, The KiSS1/GPR54 system in fish. Peptides 30(1), 164–170 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Kanda, T. Karigo, Y. Oka, Steroid sensitive kiss2 neurones in the goldfish: evolutionary insights into the duplicate kisspeptin gene-expressing neurones. J. Neuroendocrinol. 24(6), 897–906 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Servili, Y. Le Page, J. Leprince, A. Caraty, S. Escobar, I.S. Parhar, et al., Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish. Endocrinology 152(4), 1527–1540 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Tena-Sempere, A. Felip, A. GoÂmez, S. Zanuy, M. Carrillo, Comparative insights of the kisspeptin/kisspeptin receptor system: lessons from non-mammalian vertebrates. Gen. Comp. Endocrinol. 175(2), 234–243 (2012)CrossRefGoogle Scholar
  12. 12.
    A.S. Mechaly, J. Viñas, F. Piferrer, Identification of two isoforms of the kisspeptin-1 receptor (kiss1r) generated by alternative splicing in a modern teleost, the Senegalese sole (Solea senegalensis). Biol. Reprod. 80(1), 60–69 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Selvaraj, H. Kitano, Y. Fujinaga, H. Ohga, M. Yoneda, A. Yamaguchi, et al., Molecular characterization, tissue distribution, and mRNA expression profiles of two kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages. Gen. Comp. Endocrinol. 169(1), 28–38 (2010)CrossRefGoogle Scholar
  14. 14.
    G.L. Taranger, C. Haux, S.O. Stefansson, B.T. BjoÈrnsson, B.T. Walther, T. Hansen, Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162(1), 85–98 (1998)CrossRefGoogle Scholar
  15. 15.
    M. Iigo, T. Abe, S. Kambayashi, K. Oikawa, T. Masuda, K. Mizusawa, et al., Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154(1-3), 91–97 (2007a)CrossRefGoogle Scholar
  16. 16.
    M. Iigo, T. Azuma, M. Iwata, Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro. Zool. Sci. 24(1), 67–70 (2007b)CrossRefGoogle Scholar
  17. 17.
    E.N. Fuentes, D. Safian, I.E. Einarsdottir, J.A. Valdes, A.A. Elorza, A. Molina, B.T. Bjornsson, Nutritional status modulates plasma leptin, AMPK and TOR activation, and mitochondrial biogenesis: implications for cell metabolism and growth in skeletal muscle of the fine flounder. Gen. Comp. Endocrinol. 186, 172–180 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Minokoshi, B.B. Kahn, Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem. Soc. Trans. 31, 196–201 (2003)CrossRefGoogle Scholar
  19. 19.
    S.H. Bates, R.N. Kulkarni, M. Seifert, M.G. Myers, Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab. 1, 169–178 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Gorissen, N.J. Bernier, S.B. Nabuurs, G. Flik, M.O. Huising, Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J. Endocrinol. 201, 329–339 (2009)CrossRefGoogle Scholar
  21. 21.
    E. Froiland, K. Murashita, E.H. Jorgensen, T. Kurokawa, Leptin and ghrelin in anadromous Arctic charr: cloning and change in expressions during a seasonal feeding cycle. Gen. Comp. Endocrinol. 165, 136–143 (2010)CrossRefGoogle Scholar
  22. 22.
    Q. Liu, Y. Chen, D. Copeland, H. Ball, R.J. Duff, B. Rockich, R.L. Londraville, Expression of leptin receptor gene in developing and adult zebrafish. Gen. Comp. Endocrinol. 166, 346–355 (2010)CrossRefGoogle Scholar
  23. 23.
    D.A. Zieba, M. Szczesna, R. Klocek-Gorka, E. Molik, T. Misztal, G.L. Williams, K. Romanowicz, E. Stepien, D.H. Keisler, M. Murawski, Seasonal effects of central leptin infusion on secretion of melatonin and prolactin and on SOCS-3 gene expression in ewes. J. Endocrinol. 198, 147–155 (2008)CrossRefGoogle Scholar
  24. 24.
    A.G.G. Moen, R.N. Finn, Short-term, but not long-term feed restriction causes differential expression of leptins in Atlantic salmon. Gen. Comp. Endocrinol. 183, 83–88 (2013)CrossRefGoogle Scholar
  25. 25.
    A.B. Tinoco, L.G. Nisembaum, E. Isorna, M.J. Delgado, N. de Pedro, Leptins and leptin receptor expression in the goldfish (Carassius auratus). Regulation by food intake and fasting/overfeeding conditions. Peptides 34, 329–335 (2012)CrossRefGoogle Scholar
  26. 26.
    J.K. Wang, Z.L. Yan, Current status and development trend on abalone culture. Fish. Sci. 31(12), 749–753 (2012). in ChineseGoogle Scholar
  27. 27.
    Z.M. Romo, A.D. Re, F. Díaz, A. Mena, Physiological responses of pink abalone Haliotis corrugata (Gray, 1828) exposed to different combinations of temperature and salinity. Aquac. Res. 41, 953–960 (2010)Google Scholar
  28. 28.
    W. Cheng, S.P. Yeh, C.S. Wang, J.C. Chen, Osmotic and ionic changes in Taiwan abalone Haliotis diversicolor supertexta at different salinity levels. Aquaculture 203, 349–357 (2002)CrossRefGoogle Scholar
  29. 29.
    M. Wassnig, R.D. Roberts, A. Krsinich, R.W. Day, Effects of water flow rate on growth rate, mortality biomass return of abalone in slab tanks. Aquac. Res. 41, 839–846 (2010)CrossRefGoogle Scholar
  30. 30.
    M.A. Naylor, H. Kaiser, C.L.W. Jones, The effect of free ammonia nitrogen, pH and supplementation with oxygen on the growth of south African abalone, Haliotis midae L. in an abalone serial-use raceway with three passes. Aquac. Res. 45, 213–224 (2014)CrossRefGoogle Scholar
  31. 31.
    J.O. Harris, G.B. Maguire, S.J. Edwards, D.R. Johns, Low dissolved oxygen reduces growth rate and oxygen consumption rate of juvenile greenlip abalone, Haliotis laevigata Donovan. Aquaculture 174, 265–278 (1999)CrossRefGoogle Scholar
  32. 32.
    F. Ahmed, S. Segawa, M. Yokota, S. Watanabe, Effect of light on oxygen consumption and ammonia excretion in Haliotis discus discus, H. gigantea, H. Madaka and their hybrids. Aquaculture 279, 160–165 (2008)CrossRefGoogle Scholar
  33. 33.
    J.K. Kim, Y.X. Mao, G. Kraemer, C. Yarish, Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436, 52–57 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.W. Dong, S.L. Dong, X.L. Tian, F. Wang, M.Z. Zhang, Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 255, 514–521 (2006)CrossRefGoogle Scholar
  35. 35.
    T.H. Carfoot, Animal energetics (Academic Press, New York, 1987), pp. 407–515Google Scholar
  36. 36.
    D. Lemos, V.N. Phan, Energy partitioning into growth, respiration, excretion and exuvia during larval development of the shrimp Farfantepenaeus paulensis. Aquaculture 199, 131–143 (2001)CrossRefGoogle Scholar
  37. 37.
    R. Jan, K. Shao, K. Chang, A study of diurnal periodicity in oxygen consumption of the small abalone Haliotis diversicolor supertexta Lischke. Bull. Inst. Zool. Acad. Sin. 20, 1–8 (1981)Google Scholar
  38. 38.
    Z. García-Esquivel, S. Montes-Magallon, M.A. Gonzalez-Gomez, Effect of temperature and photoperiod on the growth, feed consumption, and biochemical content of juvenile green abalone, Haliotis fulgens, fed on a balanced diet. Aquaculture 262, 129–141 (2007)CrossRefGoogle Scholar
  39. 39.
    E. Gorrostieta-Hurtado, R. Searcy-Bernal, C. Anguiano-Beltrán, Z. García-Esquivel, E. Valenzuela-Espinoza, Effect of darkness on the early postlarval development of Haliotis corrugata abalone fed different diatom densities. Cienc. Mar. 35, 113–122 (2009)CrossRefGoogle Scholar
  40. 40.
    R. Day, P. Gilmour, S. Huchette, Effects of density and food supply on postlarval abalone: behaviour, growth and mortality. J. Shellfish Res. 23, 1009–1018 (2004)Google Scholar
  41. 41.
    X.L. Gao, M. Zhang, J.M. Zheng, X. Li, L. Chi, C.B. Song, Y. Liu, Effect of LED light quality on the phototaxis and locomotion behaviour of Haliotis discus hannai. Aquac. Res. 47, 3376–3389 (2016)CrossRefGoogle Scholar
  42. 42.
    B. Guo, F. Wang, S.L. Dong, Q.F. Gao, The effect of rhythmic light color fluctuation on the molting and growth of Litopenaeus vannamei. Aquaculture 314, 210–214 (2011)CrossRefGoogle Scholar
  43. 43.
    A. Berg, T. Hansen, S. Stefansson, First feeding of Atlantic salmon (Salmo salar L.) under different photoperiods. J. Appl. Ichthyol. 8, 251–256 (1992)CrossRefGoogle Scholar
  44. 44.
    J.E. Thorpe, C.E. Adams, M.S. Miles, D.S. Keay, Some influences of photoperiod and temperature on opportunity for growth in juvenile Atlantic salmon, Salmo salar L. Aquaculture 82, 119–126 (1989)CrossRefGoogle Scholar
  45. 45.
    M. Carrillo, S. Zanuy, A. Felip, M. Bayarri, G. Molés, A. Gómez, Hormonal and environmental control of puberty in perciform fish. Ann. N. Y. Acad. Sci. 1163, 49–59 (2009)CrossRefGoogle Scholar
  46. 46.
    X.L. Gao, M. Zhang, X. Li, C. Shi, C.B. Song, Y. Liu, Effects of LED light quality on the growth, metabolism, and energy budgets of Haliotis discus discus. Aquaculture 453, 31–39 (2016)CrossRefGoogle Scholar
  47. 47.
    M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  48. 48.
    M.E. Anderson, Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555 (1985)CrossRefGoogle Scholar
  49. 49.
    L.J. Li, F. Zhang, X.M. Liu, Y.P. Guo, E.B. Ma, Oxidative stress related enzymes in response to chromium (VI) toxicity in Oxya chinensis (Orthoptera: Acridoidae). J. Environ. Sci. (China) 17, 823–826 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dalian Ocean UniversityDalianChina
  2. 2.Qingdao Agricultural UniversityQingdaoChina

Personalised recommendations