GaN Substrate Material for III–V Semiconductor Epitaxy Growth

  • Rong ZhangEmail author
  • Xiangqian Xiu
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)


The rapid commercialization of III-nitride semiconductor devices for applications in visible and ultraviolet optoelectronics and in high-power and high-frequency electronics accelerates the research, development, and commercial production of GaN substrate materials. GaN substrate with low defect density will be conducive to improve the performance and lifetime of the devices, leading to significant progress in the development of several optoelectronic and high-power devices. In this paper, various fabrication techniques and their corresponding development, considered with high potential to deliver high-quality and/or cost-effective and scalable GaN crystals, are reviewed, including liquid-phase methods and gas-phase methods. Among these growth methods, hydride vapor-phase epitaxy (HVPE) is well known as the major substrate technology with high growth rate, high crystal quality, and low cost, which attracts more attention. So, we have a special discussion on the detailed technological aspects of HVPE for the production of GaN substrate materials.


Wide bandgap semiconductor GaN substrate Hydride vapor-phase epitaxy 


  1. 1.
    D. Hanser, M. Tutor, E. Preble, M. Williams, X. Xu, D. Tsvetkov, L. Liu, J. Cryst. Growth 305, 372–376 (2007)CrossRefGoogle Scholar
  2. 2.
    I. Grzegory, B. Ucznik, M. Bokowski, et al., J. Cryst. Growth 300(1), 17–25 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Karpiski, S. Porowski, S. Miotkowska, J. Cryst. Growth 56(1), 77–82 (1982)CrossRefGoogle Scholar
  4. 4.
    M. Bokowski, M. Wroblewski, B. Lucznik, et al., Mater. Sci. Semicond. Process. 4(6), 543–548 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Ehrentraut, R.T. Pakalapati, D.S. Kamber, W. Jiang, D.W. Pocius, B.C. Downey, M. McLaurin, M.P. D’Evelyn, Jpn. J. Appl. Phys. 52, 08JA01 (2013)CrossRefGoogle Scholar
  6. 6.
    W. Jiang, D. Ehrentraut, B.C. Downey, D.S. Kamber, R.T. Pakalapati, H.D. Yoo, M.P. D’Evelyn, J. Cryst. Growth 403, 18 (2014)CrossRefGoogle Scholar
  7. 7.
    H. Yamane, M. Shimada, S.J. Clarke, et al., Chem. Mater. 9(2), 413–416 (1997)CrossRefGoogle Scholar
  8. 8.
    T. Yamada, H. Yamane, Y. Yao, et al., Mater. Res. Bull. 44(3), 594–599 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Yamada, H. Yamane, H. Iwata, et al., J. Cryst. Growth 286(2), 494–497 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Morishita, F. Kawamura, M. Kawahara, et al., J. Cryst. Growth 284(1), 91–99 (2005)CrossRefGoogle Scholar
  11. 11.
    F. Kawamura, H. Umeda, M. Kawahara, M. Yoshimura, Y. Mori, T. Sasaki, H. Okado, K. Arakawa, H. Mori, Jpn. J. Appl. Phys. 45, 2528–2530 (2006)CrossRefGoogle Scholar
  12. 12.
    F. Kawamura, H. Umeda, M. Morishita, et al., Jpn. J. Appl. Phys. 2(45), L1136–L1138 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Mori, M. Imade, K. Murakami, et al., J. Cryst. Growth 350(1), 72–74 (2012)CrossRefGoogle Scholar
  14. 14.
    F. Kawamura, M. Morishita, M. Tanpo, et al., J. Cryst. Growth 310(17), 3946–3949 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Mori, M. Imade, M. Maruyama, et al., ECS J. Solid State Sci. Technol. 2(8), N3068–N3071 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Imade, K. Murakami, D. Matsuo, et al., Cryst. Growth Des. 12(7), 3799–3805 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Imanishi, K. Murakami, H. Imabayashi, et al., Phys. Status Solidi C 2012, 1–5 (2012)Google Scholar
  18. 18.
    E. Maissner, B. Birkmann, S. Hussy, G. Sun, J. Friedrich, G. Mueller, Phys. Status Solidi 2, 2040–2043 (2005)CrossRefGoogle Scholar
  19. 19.
    B.N. Feigelson, R.M. Frazier, M. Gowda, J.A. Freitas, M. Fatemi, M.A. Mastro, J.G. Tischer, J. Cryst. Growth 310, 3934–3940 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Fischer, C. Wetzel, W.L. Hansen, E.D. Bourret-Courchesne, B.K. Meyer, E.E. Haller, Appl. Phys. Lett. 69, 2716 (1996)CrossRefGoogle Scholar
  21. 21.
    H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)CrossRefGoogle Scholar
  22. 22.
    T.L. Chu, K. Ito, R.K. Smeltzer, S.S.C. Chu, J. Electrochem. Soc. 121(1), 159–162 (1974)CrossRefGoogle Scholar
  23. 23.
    M.J. Ilegems, J. Crystal Growth 13/14, 360–364 (1972)CrossRefGoogle Scholar
  24. 24.
    R.K. Crouch, W.J. Debnam, A.L. Fripp, J. Mater. Sci. 13, 2358–2364 (1978)CrossRefGoogle Scholar
  25. 25.
    T. Detchprohm, K. Hiramatsu, H. Amano, I. Akasaki, Appl. Phys. Lett. 61, 2688 (1992)CrossRefGoogle Scholar
  26. 26.
    A. Usui, H. Sunakawa, A. Sakai, A.A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997)CrossRefGoogle Scholar
  27. 27.
    J.J. Nickl, W. Just, R. Bertinger, Mater. Res. Bull. 9, 1413–1420 (1974)CrossRefGoogle Scholar
  28. 28.
    H. Lee, M. Yuri, T. Ueda, J.S. Harris, Mater. Res. Soc. Symp. Proc. 423, 233–238 (1996)CrossRefGoogle Scholar
  29. 29.
    H. Tsuchiya, M. Akamatsu, M. Ishida, F. Hasegawa, Jpn. J. Appl. Phys. 36, L748–L750 (1996)CrossRefGoogle Scholar
  30. 30.
    Y. Morimoto, K. Uchiho, S. Ushio, J. Electrochem. Soc. 120, 1783–1785 (1973)CrossRefGoogle Scholar
  31. 31.
    P.J. Born, D.S. Robertson, J. Mater. Sci. 15, 3003–2009 (1980)CrossRefGoogle Scholar
  32. 32.
    V.S. Ban, J. Electrochem. Soc. 119, 761 (1972)CrossRefGoogle Scholar
  33. 33.
    D.K. Wickenden, K.R. Faulkner, R.W. Brander, B.J. Isherwood, J. Cryst. Growth 9, 158–164 (1971)CrossRefGoogle Scholar
  34. 34.
    G. Nataf, B. Beaumont, A. Bouille, S. Haffouz, M. Vaille, P. Gibart, J. Cryst. Growth 192, 73 (1998)CrossRefGoogle Scholar
  35. 35.
    W. Zhang, T. Riemann, H.R. Alves, M. Heuken, D. Meister, W. Kriegseis, D.M. Hofmann, J. Christen, A. Krost, B.K. Meyer, J. Cryst. Growth 234, 616 (2002)CrossRefGoogle Scholar
  36. 36.
    R.J. Monlnar, K.B. Nichols, P. Maki, E.R. Brown, I. Melngailis, Mater. Res. Soc. Symp. Proc. 378, 479–484 (1995)CrossRefGoogle Scholar
  37. 37.
    J.J. Naniwae, S. Itoh, H. Amano, K. Itoh, K. Hiramatsu, I. Akasaki, J. Cryst. Growth 99, 381–384 (1990)CrossRefGoogle Scholar
  38. 38.
    R.J. Monlnar, P. Maki, R. Aggarwal, Z.L. Liau, E.R. Brown, I. Melngailis, W. Götz, L.T. Romano, N.M. Johnson, Mater. Res. Soc. Symp. Proc. 423, 221–226 (1996)CrossRefGoogle Scholar
  39. 39.
    M. Sano, M. Aoki, Jpn. J. Appl. Phys. 15, 1943–1950 (1976)CrossRefGoogle Scholar
  40. 40.
    A. Nikolaev, Y. Melnik, N. Kuznetsov, A. Strelchuk, A. Kovarsky, K. Vassilevski, V. Dmitriev, Mater. Res. Soc. Symp. Proc. 482, 251–256 (1998)CrossRefGoogle Scholar
  41. 41.
    G. Jacob, M. Boulou, M. Furtado, J. Cryst. Growth 42, 136–143 (1977)CrossRefGoogle Scholar
  42. 42.
    H. Tsuchiya, K. Sunaba, S. Yonemura, T. Suemasu, F. Hasegawa, Jpn. J. Appl. Phys. 36, L1–L3 (1997)CrossRefGoogle Scholar
  43. 43.
    A. Yamaguchi, T. Manak, A. Sakai, H. Sunakawa, A. Kimura, M. Nido, A. Usui, Jpn. J. Appl. Phys. 35, L873–L875 (1996)CrossRefGoogle Scholar
  44. 44.
    H. Tsuchiya, T. Okahisa, F. Hasegawa, H. Okumura, S. Yoshida, Jpn. J. Appl. Phys. 33, 1747–1752 (1994)CrossRefGoogle Scholar
  45. 45.
    W.M. Yim, E.J. Stofko, P.J. Zanzucchi, J.I. Pankove, M. Ettenberg, S.L. Gibert, J. Appl. Phys. 44, 292–296 (1973)CrossRefGoogle Scholar
  46. 46.
    J. Hagen, R.D. Metcalfe, D. Wickenden, W. Clark, Solid State Phys. 11, L143–L146 (1978)CrossRefGoogle Scholar
  47. 47.
    B. Baranov, L. Däweritz, V.B. Gutan, G. Jungk, H. Neumann, H. Raidt, Phys. Status Solidi 49, 629–636 (1978)CrossRefGoogle Scholar
  48. 48.
    T.S. Zheleva, O.H. Nam, M.D. Bremser, R.F. Davis, Appl. Phys. 71, 2472 (1997)Google Scholar
  49. 49.
    A. Sakai, H. Sunakawa, A. Usui, Appl. Phys. Lett. 71, 2259 (1997)CrossRefGoogle Scholar
  50. 50.
    M.D. Craven, S.H. Lim, et al., Appl. Phys. Lett. 81(7), 1201 (2002)CrossRefGoogle Scholar
  51. 51.
    B. Beaumont, P. Gibart, M. Vaille, S. Haouz, G. Nataf, A. Bouille, J. Cryst. Growth 189/190, 97 (1998)CrossRefGoogle Scholar
  52. 52.
    H. Marchand, J.P. Ibbetson, P.T. Fini, X.H. Wu, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, MRS Int. J. Nitride Semicond. Res. 4S1, G4.5 (1999)Google Scholar
  53. 53.
    B.P. Wagner, Z.J. Reitmeier, J.S. Park, D. Bachelor, D.N. Zakharov, Z. Liliental Weber, R.F. Davis, J. Cryst. Growth 290(2), 504–512 (2006)CrossRefGoogle Scholar
  54. 54.
    C.R. Miskys, M.K. Kelly, O. Ambacher, M. Stutzmann, Phys. Status Solidi 6, 1627–1650 (2003)CrossRefGoogle Scholar
  55. 55.
    M.K. Kelly, R.P. Vaudo, V.M. Phanse, L.G. gens, O. Ambacher, M. Stutzmann, Jpn. J. Appl. Phys. 38L, 217 (1999)CrossRefGoogle Scholar
  56. 56.
    K. Tomita, T. Kachi, S. Nagai, A. Kojima, S. Yamasaki, M. Koike, Phys. Status Solidi 194, 563 (2002)CrossRefGoogle Scholar
  57. 57.
    Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, A. Usui, Phys. Stat. Sol. A 194(2), 554 (2002)CrossRefGoogle Scholar
  58. 58.
    A. Usui, T. Ichihashi, K. Kobayashi, H. Sunakawa, Y. Oshima, T. Eri, M. Shibata, Phys. Stat. Sol. A 194(2), 572 (2002)CrossRefGoogle Scholar
  59. 59.
    Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003)CrossRefGoogle Scholar
  60. 60.
    R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, H. Hayashi, J. Cryst. Growth 310, 3911 (2008)CrossRefGoogle Scholar
  61. 61.
    R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, R. Kucharski, M. Zajac, M. Rudzinski, R. Kudrawiec, J. Serafinczuk, W. Strupinski, J. Cryst. Growth 312, 2499 (2010)CrossRefGoogle Scholar
  62. 62.
    K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 311, 3011 (2009)CrossRefGoogle Scholar
  63. 63.
    D. Martin, J. Napierala, M. Ilegems, R. Butté, N. Grandjean, Appl. Phys. Lett. 88, 241914 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations