Advertisement

Bivalve Chemosymbioses on Mudflats

  • Suzanne C. DufourEmail author
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 7)

Abstract

Mudflat sediments are typically enriched in reduced sulfur compounds, which can fuel bacterial chemoautotrophic production. Symbiotic associations between marine bivalves and chemolithoautotrophic, sulfur-oxidizing bacteria are common in sulfur-rich marine habitats, and the presence of infaunal chemosymbiotic bivalves in mudflats is reviewed herein. Chemosymbiotic bivalves from the families Lucinidae, Solemyidae and Thyasiridae have been reported to inhabit intertidal sediments, especially within, or near seagrass beds or mangroves; of the three families, the Lucinidae can be particularly abundant. Chemosymbiotic bivalves can alter chemical conditions in sediments, influence carbon and sulfur cycles, and provide a food source to invertebrates, birds and humans. In general, chemosymbiotic bivalves are uncommon in mudflats, despite the abundance of reduced sulfur, and reasons for their relative paucity in intertidal sediments are discussed.

References

  1. Allen JA (1953) Function of the foot in the Lucinacea (Eulamelibranchia). Nature 171:1117–1118PubMedCrossRefPubMedCentralGoogle Scholar
  2. Allen JA (1958) On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philos Trans R Soc Lond B 241:421–484CrossRefGoogle Scholar
  3. Ball AD, Purdy KJ, Glover EA, Taylor JD (2009) Ctenidial structure and three bacterial symbiont morphotypes in Anodontia (Euanodontia) ovum (Reeve, 1850) from the Great Barrier Reef, Australia (Bivalvia: Lucinidae). J Mollusc Stud 75:175–185CrossRefGoogle Scholar
  4. Barnes PAG, Hickman CS (1999) Lucinid bivalves and marine angiosperms: a search for causal relationships. In: Walker DI, Wells FE (eds) The seagrass flora and fauna of Rottnest Island. Western Australian Museum, Perth, Western Australia, pp 215–238Google Scholar
  5. Berg CJ Jr, Alatalo P (1984) Potential of chemosynthesis in molluscan mariculture. Aquaculture 39:165–179CrossRefGoogle Scholar
  6. Brissac T, Merçot H, Gros O (2011) Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines). FEMS Microbiol Ecol 75:63–76PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cammen LM (1991) Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat. Mar Ecol Prog Ser 71:13–25CrossRefGoogle Scholar
  8. Cavanaugh CM (1985) Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Biol Soc Wash Bull 6:373–388Google Scholar
  9. Christo SW, Ivachuk CS, Ferreira-Júnior AL, Absher TM (2016) Reproductive periods of Lucina pectinata (Bivalve; Lucinidae) in the Paranaguá Estuarine Complex, Paraná – Brazil. Braz J Biol 76:300–306PubMedCrossRefPubMedCentralGoogle Scholar
  10. Conway N, McDowell Capuzzo J, Fry B (1989) The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from a stable isotope analysis of endosymbionts and host. Limnol Oceanogr 34:249–255CrossRefGoogle Scholar
  11. Cook PLM, Revill AT, Clementson LA, Volkman JK (2004) Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. III. Sources of organic matter. Mar Ecol Prog Ser 280:55–72CrossRefGoogle Scholar
  12. Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929CrossRefGoogle Scholar
  13. Dando PR, Spiro B (1993) Varying nutritional dependence of the thyasirid bivalves Thyasira sarsia and T. equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Mar Ecol Prog Ser 92:151–158CrossRefGoogle Scholar
  14. Dando PR, Southward AJ, Southward EC, Terwilliger NB, Terwilliger RC (1985) Sulphur-oxidizing bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Mar Ecol Prog Ser 23:85–98CrossRefGoogle Scholar
  15. Dando PR, Southward AJ, Southward EC (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc R Soc Lond Ser B 227:227–247CrossRefGoogle Scholar
  16. Dando PR, Ridgway SA, Spiro B (1994) Sulphide ‘mining’ by lucinid bivalve molluscs: demonstrated by stable sulphur isotope measurements and experimental models. Mar Ecol Prog Ser 107:169–175CrossRefGoogle Scholar
  17. Dando PR, Southward AJ, Southward EC (2004) Rates of sediment sulphide oxidation by the bivalve mollusc Thyasira sarsi. Mar Ecol Prog Ser 280:181–187CrossRefGoogle Scholar
  18. Dashtgard SE, Gingras MK, Pemberton SG (2008) Grain-size controls on the occurrence of bioturbation. Palaeogeogr Palaeoclimatol Palaeoecol 257:224–243CrossRefGoogle Scholar
  19. Dauwe B, Herman PMJ, Heip CHR (1998) Community structure and bioturbation potential of macrofauna at found North Sea stations with contrasting food supply. Mar Ecol Prog Ser 173:67–83CrossRefGoogle Scholar
  20. de Fouw J, Govers LL, van de Koppel J, van Belzen J, Dorigo W, Cheikh MAS, Christianen MJA, van der Reijden KJ, van der Geest M, Piersma T, Smolders AJP, Olff H, Lamers LPM, van Gils JA, van der Heide T (2016) Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Curr Biol 26:1051–1056PubMedCrossRefPubMedCentralGoogle Scholar
  21. Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86CrossRefGoogle Scholar
  22. Drew GA (1900) Locomotion in Solenomya and its relatives. Anat Anz 17:257–266Google Scholar
  23. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dufour SC (2005) Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biol Bull 208:200–212PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dufour SC, Felbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426:65–67PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dufour SC, Laurich JR, Batstone RT, McCuaig B, Elliott A, Poduska KM (2014) Magnetosome-containing bacteria living as symbionts of bivalves. ISME J 8:2453–2462PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duperron S, Gaudron SM, Rodrigues CF, Cunha MR, Decker C, Olu K (2013) An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea. Biogeosciences 10:3241–3267CrossRefGoogle Scholar
  28. Fenchel T, Reidl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:59–68CrossRefGoogle Scholar
  29. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–613Google Scholar
  30. Frenkiel L, Gros O, Mouëza M (1995) Gill structure in Lucina pectinata (Bivalvia: Lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur-oxidizing bacteria. Mar Biol 125:511–524Google Scholar
  31. Frey RW (1968) The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. I. Pelecypod burrows. J Paleontol 42:570–574Google Scholar
  32. Glover EA, Taylor JD (2001) Systematic revision of Australian and Indo-Pacific Lucinidae (Mollusca: Bivalvia): Pillucina, Wallucina and descriptions of two new genera and four new species. Rec Aust Mus 53:263–292CrossRefGoogle Scholar
  33. Glover EA, Taylor JD (2007) Diversity of chemosymbiotic bivalves on coral reefs: Lucinidae of New Caledonia and Lifou (Mollusca, Bivalvia). Zoosystema 29:109–181Google Scholar
  34. Glover EA, Taylor JD, Williams ST (2008) Mangrove-associated lucinid bivalves of the central Indo-West Pacific: review of the “Austriella” group with a new genus and species (Mollusca: Bivalvia: Lucinidae). Raffles Bull Zool Suppl 18:25–40Google Scholar
  35. Gros O, Frenkiel L, Mouëza M (1996) Gill ultrastructure and symbiotic bacteria in the tropical lucinid, Linga pensylvanica (Linné). Symbiosis 20:259–280Google Scholar
  36. Gros O, Frenkiel L, Mouëza M (1997) Embryonic, larval, and post-larval development in the symbiotic clam, Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol 116:86–101CrossRefGoogle Scholar
  37. Gros O, Duplessis MR, Felbeck H (1999) Embryonic development and endosymbiont transmission mode in the symbiotic clam Lucinoma aequizonata (Bivalvia: Lucinidae). Invertebr Reprod Dev 36:93–103CrossRefGoogle Scholar
  38. Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N (2012) Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol 14:1584–1595PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gustafson RG, Lutz RA (1992) Larval and early post-larval development of the protobranch bivalve Solemya velum (Mollusca: Bivalvia). J Mar Biol Assoc U K 72:383–402CrossRefGoogle Scholar
  41. Hakonen A, Hulth S, Dufour S (2010) Analytical performance during ratiometric long-term imaging of pH in bioturbated sediments. Talanta 81:1393–1401PubMedCrossRefPubMedCentralGoogle Scholar
  42. Healy JM, Mikkelsen PM, Giribet G, Bieler R (2017) Sperm ultrastructure of the Protobranchia: comparison with other bivalve mollusks and potential taxonomic and phylogenetic significance. Fieldiana Life Earth Sci 11:1–28CrossRefGoogle Scholar
  43. Herry A, Le Pennec M (1987) Endosymbiotic bacteria in the gills of the littoral bivalve molluscs Thyasira flexuosa (Thyasiridae) and Lucinella divaricata (Lucinidae). Symbiosis 4:25–36Google Scholar
  44. Herry A, Diouris M, Le Pennec M (1989) Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101:305–312CrossRefGoogle Scholar
  45. Higgs ND, Newton H, Attrill MJ (2016) Caribbean spiny lobster fishery is underpinned by trophic subsidies from chemosynthetic primary production. Curr Biol 26:3393–3398PubMedCrossRefPubMedCentralGoogle Scholar
  46. Howarth RW (1984) The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27CrossRefGoogle Scholar
  47. Jackson JBC (1972) The ecology of molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Mar Biol 14:304–337CrossRefGoogle Scholar
  48. Jackson JBC (1973) The ecology of molluscs of Thalassia communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bull Mar Sci 23:313–350Google Scholar
  49. Johnson MA, Fernandez C, Pergent G (2002) The ecological importance of an invertebrate chemoautotrophic symbiosis to phanerogam seagrass beds. Bull Mar Sci 71:1343–1351Google Scholar
  50. Kauffmann EG (1967) Cretaceous Thyasira from the Western Interior of North America. Smithson Misc Collect 152:1–159Google Scholar
  51. Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24CrossRefGoogle Scholar
  52. Krueger DM, Gallagher SM, Cavanaugh CM (1992) Suspension feeding on phytoplankton by Solemya velum, a symbiont-containing clam. Mar Ecol Prog Ser 86:145–151CrossRefGoogle Scholar
  53. Krueger DM, Gustafson RG, Cavanaugh CM (1996) Vertical transmission of chemoautotrophic symbionts in the bivalve Solemya velum (Bivalvia: Protobranchia). Biol Bull 190:195–202PubMedCrossRefPubMedCentralGoogle Scholar
  54. Le Pennec M, Beninger PG (2000) Reproductive characteristics and strategies of reducing-system bivalves. Comp Biochem Physiol A 126:1–16CrossRefGoogle Scholar
  55. Le Pennec M, Beninger PG, Herry A (1995a) Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp Biochem Physiol 111A:183–189CrossRefGoogle Scholar
  56. Le Pennec M, Herry A, Johnson M, Beninger PG (1995b) Nutrition-gametogenesis relationship in the endosymbiont host bivalve Loripes lucinalis (Lucinidae) from reducing coastal habitats. In: Eleftheriou A, Ansell AD, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen and Olsen, Fredensborg, pp 139–142Google Scholar
  57. Lebata MJHL (2000) Elemental sulfur in the gills of the mangrove mud clam Anodontia edentula (Family Lucinidae). J Shellfish Res 19:241–245Google Scholar
  58. Lebata MJHL (2001) Oxygen, sulphide and nutrient uptake of the mangrove mud clam Anodontia edentulata (Family: Lucinidae). Mar Pollut Bull 42:1133–1138PubMedCrossRefPubMedCentralGoogle Scholar
  59. Marbà N, Duarte CM, Terrados J, Halun Z, Gacia E, Fortes MD (2010) Effects of seagrass rhizospheres on sediment redox conditions in SE Asian coastal ecosystems. Mar Ecol Prog Ser 33:107–117Google Scholar
  60. McCuaig B, Liboiron F, Dufour SC (2017) The bivalve Thyasira cf. gouldi hosts chemoautotrophic symbiont populations with strain level diversity. PeerJ 5:e3597PubMedPubMedCentralCrossRefGoogle Scholar
  61. Meyer E, Nilkerd B, Glover EA, Taylor JD (2008) Ecological importance of chemoautotrophic lucinid bivalves in a peri-mangrove community in eastern Thailand. Raffles Bull Zool 18:41–55Google Scholar
  62. Morse ES (1913) Observations on living Solenomya. Biol Bull 25:261–281CrossRefGoogle Scholar
  63. Ockelmann WK (1958) The zoology of East Greenland: marine lamellibranchiata. Medd Grønland 122:1–256Google Scholar
  64. Oliver PG (1986) A new lucinid bivalve from the Niger Delta and an appraisal of the Loripes group (Bivalvia, Lucinacea). Basteria 50:47–64Google Scholar
  65. Owen G (1961) A note on the habits and nutrition of Solemya parkinsoni (Protobranchia: Bivalvia). Q J Microsc Sci 102:15–21Google Scholar
  66. Papaspyrou S, Gregersen T, Kristensen E, Christensen B, Cox RP (2006) Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens). Mar Biol 148:541–550CrossRefGoogle Scholar
  67. Payne CM, Allen JA (1991) The morphology of deep-sea Thyasiridae (Mollusca: Bivalvia) from the Atlantic Ocean. Philos Trans R Soc Lond B 334:481–562CrossRefGoogle Scholar
  68. Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, Bulgheresi S, Mussmann M, Herbold C, Seah BKB, Antony CP, Liu D, Belitz A, Weber M (2016) Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol 2:16195PubMedCrossRefPubMedCentralGoogle Scholar
  69. Primavera JH, Lebata MJHL, Gustilo LF, Altamirano JP (2002) Collection of the clam Anodontia edentula in mangrove habitats in Panay and Guimaras, central Philippines. Wetl Ecol Manag 10:363–370CrossRefGoogle Scholar
  70. Queirós AM, Birchenough SNR, Bremner J, Godbold JA, Parker RE, Romero-Ramirez A, Reiss H, Solan M, Somerfield PJ, Van Colen C, Van Hoey G, Widdicombe S (2013) A bioturbation classification of European marine infaunal invertebrates. Ecol Evol 3:3958–3985PubMedPubMedCentralCrossRefGoogle Scholar
  71. Rainer SF, Wadley VA (1991) Abundance, growth and production of the bivalve Solemya sp, a food source for juvenile rock lobsters in a seagrass community in western Australia. J Exp Mar Biol Ecol 152:201–223CrossRefGoogle Scholar
  72. Rattanachot E, Prathep A (2015) Species-specific effects of seagrass on belowground biomass, redox potential and Pillucina vietnamica (Lucinidae). J Mar Biol Assoc U K 95:1693–1704CrossRefGoogle Scholar
  73. Reid RGB (1980) Aspects of the biology of a gutless species of Solemya (Bivalvia: Protobranchia). Can J Zool 58:386–393CrossRefGoogle Scholar
  74. Reid RGB, Bernard FR (1980) Gutless bivalves. Science 208:609–610PubMedCrossRefPubMedCentralGoogle Scholar
  75. Reid RGB, Brand DG (1987) Observations of Australian Solemyidae. J Malacol Soc Aust 8:41–50Google Scholar
  76. Reynolds LK, Berg P, Zieman JC (2007) Lucinid clam influence on the biogeochemistry of the seagrass Thalassia testudinum sediments. Estuar Coasts 30:482–490CrossRefGoogle Scholar
  77. Roeselers G, Newton ILG (2012) On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol 94:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  78. Rondinelli SF, Barros F (2010) Evaluating shellfish gathering (Lucina pectinata) in a tropical mangrove system. J Sea Res 64:401–407CrossRefGoogle Scholar
  79. Rosenberg R, Davey E, Gunnarsson J, Norling K, Frank M (2007) Application of computer-aided tomography to visualize and quantify biogenic structures in marine sediments. Mar Ecol Prog Ser 331:23–34CrossRefGoogle Scholar
  80. Russell SL, Cavanaugh CM (2017) Intra-host genetic diversity of bacterial symbionts exhibits evidence of mixed infections and recombinant haplotypes. Mol Biol Evol msx188Google Scholar
  81. Russell SL, Corbett-Detig RB, Cavanaugh CM (2017) Mixed transmission modes and dynamic genome evolution in an obligate animal-bacterial symbiosis. ISME J 11:1359–1371PubMedPubMedCentralCrossRefGoogle Scholar
  82. Salas C, Woodside J (2002) Lucinoma kazani n. sp. (Mollusca: Bivalvia): Evidence of a living benthic community associated with a cold seep in the eastern Mediterranean Sea. Deep-Sea Res I Oceanogr Res Pap 49:991–1005CrossRefGoogle Scholar
  83. Scott KM (2005) Allometry of gill weights, gill surface areas, and foot biomass ∂13C values of the chemoautotroph-bivalve symbiosis Solemya velum. Mar Biol 147:935–941CrossRefGoogle Scholar
  84. Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J Mar Biol Assoc U K 66:889–914CrossRefGoogle Scholar
  85. Spiro B, Greenwood PB, Southward AJ, Dando PR (1986) 13C/12C ratios in marine invertebrates from reducing sediments: confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Mar Ecol Prog Ser 28:233–240CrossRefGoogle Scholar
  86. Stanley SM (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). Geol Soc Am Mem 125:296 ppGoogle Scholar
  87. Stanley SM (2014) Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves. Geology 42:803–806CrossRefGoogle Scholar
  88. Stewart FJ, Cavanaugh CM (2006) Bacterial endosymbiosis in Solemya (Mollusca: Bivalvia) – model systems for studies of symbiont-host adaptation. Antonie Van Leeuwenhoek 90:343–360PubMedCrossRefPubMedCentralGoogle Scholar
  89. Stewart FJ, Newton ILG, Cavanaugh CM (2005) Chemosymbiotic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sundbäck K, Miles A, Göransson E (2000) Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study. Mar Ecol Prog Ser 200:59–76CrossRefGoogle Scholar
  91. Taylor JD, Glover EA (2000) Functional anatomy, chemosymbiosis and evolution of the Lucinidae. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the bivalvia. Geological Society, London, Special Publications 177, pp 207–225Google Scholar
  92. Taylor JD, Glover EA (2005) Cryptic diversity of chemosymbiotic bivalves: a systematic revision of worldwide Anodontia (Mollusca: Bivalvia: Lucinidae). Syst Biodivers 3:281–338CrossRefGoogle Scholar
  93. Taylor JD, Glover EA (2006) Lucinidae (Bivalvia) – the most diverse group of chemosymbiotic molluscs. Zool J Linnean Soc 148:421–438CrossRefGoogle Scholar
  94. Taylor JD, Williams ST, Glover EA (2007) Evolutionary relationships of the bivalve family Thyasiridae (Mollusca: Bivalvia), monophyly and superfamily status. J Mar Biol Assoc UK 87:565–574CrossRefGoogle Scholar
  95. Taylor JD, Glover EA, Smith L, Williams ST (2014) Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc 111:401–420CrossRefGoogle Scholar
  96. van der Geest M, Sall AA, Ely SO, Nauta RW, van Gils JA, Piersma T (2014) Nutritional and reproductive strategies in a chemosymbiotic bivalve living in a tropical intertidal seagrass bed. Mar Ecol Prog Ser 501:113–126CrossRefGoogle Scholar
  97. van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP, van Gils JA (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434PubMedCrossRefPubMedCentralGoogle Scholar
  98. van Gils JA, van der Geest M, Jansen EJ, Govers LL, de Fouw J, Piersma T (2012) Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey. Ecology 93:1143–1152PubMedCrossRefPubMedCentralGoogle Scholar
  99. van Gils JA, van der Geest M, Leyrer J, Oudman T, Lok T, Onrust J, de Fouw J, van der Heide T, van den Hout PJ, Spaans B, Dekinga A, Brugge M, Piersma T (2013) Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proc R Soc B 280:20130861PubMedCrossRefPubMedCentralGoogle Scholar
  100. Vasquez-Cardenas D, Quintana CO, Meysman FJR, Kristensen E, Boschker HTS (2016) Species-specific effects of two bioturbating polychaetes on sediment chemoautotrophic bacteria. Mar Ecol Prog Ser 549:55–68CrossRefGoogle Scholar
  101. von Cosel R (2006) Taxonomy of West African bivalves VIII. Remarks on Lucinidae, with descriptions of five new genera and nine new species. Zoosystema 28:805–851Google Scholar
  102. Williams AB, Porter HJ (1971) A ten-year study of meroplankton in North Carolina estuaries: occurrence of postmetamorphal bivalves. Chesap Sci 12:26–32CrossRefGoogle Scholar
  103. Yonge CM (1939) The protobranchiate Mollusca; a functional interpretation of their structure and evolution. Philos Trans R Soc Lond Ser B Biol Sci 230:79–148Google Scholar
  104. Zabbey N, Hart AI, Wolff WJ (2010) Population structure, biomass and production of the West African lucinid Keletistes rhizoecus (Bivalvia, Mollusca) in Sivibilagbara swamp at Bodo Creek, Niger Delta, Nigeria. Hydrobiologia 654:193–203CrossRefGoogle Scholar
  105. Zanzerl H, Dufour SC (2017) The burrowing behaviour of symbiotic and asymbiotic thyasirid bivalves. J Conchol 42:299–308Google Scholar
  106. Zardus JD (2002) Protobranch bivalves. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, vol 42. Academic, London, pp 1–65Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiologyMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations