The Upper Living Levels: Invertebrate Macrofauna

  • Carl Van ColenEmail author
Part of the Aquatic Ecology Series book series (AQEC, volume 7)


Mudflats provide a suitable habitat for a functionally diverse invertebrate macrofauna community that can cope with the high variability in sediment physico-chemical conditions associated with the tidal regime. The most common macrofaunal taxonomic groups are annelids, molluscs and crustaceans. Macrofauna are usually the link from primary producers, meiofauna, and detritus to higher trophic levels like wading birds and epibenthic fish that forage in mudflats. Behavioral activities related to macrofauna feeding, burrowing and respiration alter biogeochemistry and mudflat sediment dynamics and are thus of paramount importance for the cycling of energy and matter in mudflats from estuaries, mangroves and coastal lagoons. Variability in abiotic and biotic interactions structures macrofauna communities in space and time and hence defines the influence macrofauna has on the diversity and functioning of the wider ecosystem through direct and indirect interactions.


  1. Aberson MJR, Bolam SG, Hughes RG (2011) The dispersal and colonisation behaviour of the marine polychaete Nereis diversicolor (O. F. Muller) in south-east England. Hydrobiologia 672:3–14CrossRefGoogle Scholar
  2. Aberson MJR, Bolam SG, Hughes RG (2016) The effect of sewage pollution on the feeding behaviour and diet of Hediste (Nereis diversicolor (OF Muller, 1776)) in three estuaries in south-east England, with implications for saltmarsh erosion. Mar Pollut Bull 105:150–160PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alves RMS (2017) Spatial structure and temporal dynamics of an intertidal population of the marine ecosystem engineering worm Lanice conchilega (Pallas, 1766). PhD thesis, Ghent University, 168 pGoogle Scholar
  4. Alves RMS, Vanaverbeke J, Bouma TJ, Guarini JM, Vincx M, Van Colen C (2017) Effects of temporal fluctuation in population processes of intertidal Lanice conchilega (Pallas, 1766) aggregations on its ecosystem engineering. Estuar Coast Shelf Sci 188:88–98CrossRefGoogle Scholar
  5. Anibal J, Rocha C, Sprung M (2007) Mudflat surface morphology as a structuring agent of algae and associated macroepifauna communities: a case study in the Ria Formosa. J Sea Res 57:36–46CrossRefGoogle Scholar
  6. Armonies W, Hartke D (1995) Floating of mud snails Hydrobia ulvae in tidal waters of the Wadden Sea, and its implications in distribution patterns. Helgoländer Meeresun 49:529–538CrossRefGoogle Scholar
  7. Barbeau MA, Grecian LA, Arnold EE, Sheahan DC, Hamilton DJ (2009) Spatial and temporal variation in the population dynamics of the intertidal amphipod Corophium volutator in the upper Bay of Fundy, Canada. J Crustac Biol 29:491–506CrossRefGoogle Scholar
  8. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193CrossRefGoogle Scholar
  9. Beninger PG, Boldina I (2014) Fine-scale spatial distribution of the temperate infaunal bivalve Tapes (=Ruditapes) philippinarum (Adams and Reeve) on fished and unfished intertidal mudflats. J Exp Mar Biol Ecol 457:128–134CrossRefGoogle Scholar
  10. Beukema JJ, Dekker R (2014) Variability in predator abundance links winter temperatures and bivalve recruitment: correlative evidence from long-term data in a tidal flat. Mar Ecol Prog Ser 513:1–15CrossRefGoogle Scholar
  11. Beukema JJ, Flach EC (1995) Factors controlling the upper and lower limits of the intertidal distribution of 2 Corophium species in the Wadden Sea. Mar Ecol Prog Ser 125:117–126CrossRefGoogle Scholar
  12. Beukema JJ, Essink K, Michaelis H, Zwarts L (1993) Year-to-year variability in the biomass of macrobenthic animals on tidal flats of the Wadden Sea: how predictable is this food source for birds? Neth J Sea Res 31(4):319–330CrossRefGoogle Scholar
  13. Bocher P, Piersma T, Dekinga A, Kraan C, Yates MG, Guyot T, Folmer EO, Radenac G (2007) Site- and species-specific distribution patterns of molluscs at five intertidal soft-sediment areas in northwest Europe during a single winter. Mar Biol 151:577–594CrossRefGoogle Scholar
  14. Bolam SG, Fernandes TF, Huxham M (2002) Diversity, biomass, and ecosystem processes in the marine benthos. Ecol Monogr 72:599–615CrossRefGoogle Scholar
  15. Boldina I, Beninger PG (2013) Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast. J Sea Res 76:193–200CrossRefGoogle Scholar
  16. Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40CrossRefGoogle Scholar
  17. Bouma TJ, Ortells V, Ysebaert T (2009) Comparing biodiversity effects among ecosystem engineers of contrasting strength: macrofauna diversity in Zostera noltii and Spartina anglica vegetations. Helgol Mar Res 63:3–18CrossRefGoogle Scholar
  18. Cadee GC (1976) Sediment reworking by Arenincola marina on tidal flats in Dutch Wadden Sea. J Sea Res 10(4):440–460Google Scholar
  19. Cadee GC (1979) Sediment reworking by the polychaete Heteromastus filiformis on a tidal Flat in the Dutch Wadden Sea. Neth J Sea Res 13:441–456CrossRefGoogle Scholar
  20. Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47CrossRefGoogle Scholar
  21. Ciutat A, Widdows J, Pope ND (2007) Effect of Cerastoderma edule density on near-bed hydrodynamics and stability of cohesive muddy sediments. J Exp Mar Biol Ecol 346:114–126CrossRefGoogle Scholar
  22. Connell JH (1978) Diversity in tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310CrossRefGoogle Scholar
  23. Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343CrossRefGoogle Scholar
  24. Davies MS, Beckwith P (1999) Role of mucus trails and trail-following in the behaviour and nutrition of the periwinkle Littorina littorea. Mar Ecol Prog Ser 179:247–257CrossRefGoogle Scholar
  25. Davies MS, Blackwell J (2007) Energy saving through trail following in a marine snail. Proc R Soc Biol Sci 274:1233–1236CrossRefGoogle Scholar
  26. De Backer A, Van Ael E, Vincx M, Degraer S (2010) Behaviour and time allocation of the mud shrimp, Corophium volutator, during the tidal cycle: a laboratory study. Helgol Mar Res 64:63–67CrossRefGoogle Scholar
  27. De Backer A, Van Coillie F, Montserrat F, Provoost P, Van Colen C, Vincx M, Degraer S (2011) Bioturbation effects of Corophium volutator: importance of density and behavioural activity. Estuar Coast Shelf Sci 91:306–313CrossRefGoogle Scholar
  28. De Smet B, D’Hondt AS, Verhelst P, Fournier J, Godet L, Desroy N, Rabaut M, Vincx M, Vanaverbeke J (2015) Biogenic reefs affect multiple components of intertidal soft-bottom benthic assemblages: the Lanice conchilega case study. Estuar Coast Shelf Sci 152:44–55CrossRefGoogle Scholar
  29. Drolet D, Barbeau MA (2009a) Diel and semi-lunar cycles in the swimming activity of the intertidal, benthic amphipod Corophium volutator in the upper Bay of Fundy, Canada. J Crustac Biol 29:51–56CrossRefGoogle Scholar
  30. Drolet D, Barbeau MA (2009b) Differential emigration causes aggregation of the amphipod Corophium volutator (Pallas) in tide pools on mudflats of the upper Bay of Fundy, Canada. J Exp Mar Biol Ecol 370:41–47CrossRefGoogle Scholar
  31. Esselink P, Zwarts L (1989) Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar Ecol Prog Ser 56:243–254CrossRefGoogle Scholar
  32. Essink K (2003) Response of an estuarine ecosystem to reduced organic waste discharge. Aquat Ecol 37:65–76CrossRefGoogle Scholar
  33. Flach EC (1992) The Influence of 4 macrozoobenthic species on the abundance of the amphipod Corophium volutator on tidal flats of the Wadden Sea. Neth J Sea Res 29:379–394CrossRefGoogle Scholar
  34. Flynn AM, Smee DL (2010) Behavioral plasticity of the soft-shell clam, Mya arenaria (L.), in the presence of predators increases survival in the field. J Exp Mar Biol Ecol 383:32–38CrossRefGoogle Scholar
  35. Giere O (2006) Ecology and biology of marine oligochaeta – an inventory rather than another review. Hydrobiologia 564:103–116CrossRefGoogle Scholar
  36. Green L, Fong P (2016) The good, the bad and the Ulva: the density dependent role of macroalgal subsidies in influencing diversity and trophic structure of an estuarine community. Oikos 125:988–1000CrossRefGoogle Scholar
  37. Grilo TF, Cardoso PG, Dolbeth M, Bordalo MD, Pardal MA (2011) Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar Pollut Bull 62:303–311PubMedCrossRefPubMedCentralGoogle Scholar
  38. Guarini JM, Blanchard GF, Bacher C, Gros P, Riera P, Richard P, Gouleau D, Galois R, Prou J, Sauriau PG (1998) Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar Ecol Prog Ser 166:131–141CrossRefGoogle Scholar
  39. Hampel H, Cattrijsse A, Mees J (2004) Changes in marsh nekton communities along the salinity gradient of the Schelde river, Belgium and The Netherlands. Hydrobiologia 515:137–146CrossRefGoogle Scholar
  40. Herman PMJ, Middelburg JJ, Widdows J, Lucas CH, Heip CHR (2000) Stable isotopes’ as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar Ecol Prog Ser 204:79–92CrossRefGoogle Scholar
  41. Herman PMJ, Middelburg JJ, Heip CHR (2001) Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Cont Shelf Res 21:2055–2071CrossRefGoogle Scholar
  42. Hiddink JG, Kock RP, Wolff WJ (2002a) Active pelagic migrations of the bivalve Macoma balthica are dangerous. Mar Biol 140:1149–1156CrossRefGoogle Scholar
  43. Hiddink JG, Marijnissen SAE, Troost K, Wolff WJ (2002b) Predation on O-group and older year classes of the bivalve Macoma balthica: interaction of size selection and intertidal distribution of epibenthic predators. J Exp Mar Biol Ecol 269:223–248CrossRefGoogle Scholar
  44. Hiddink JG, ter Hofstede R, Wolff WJ (2002c) Predation of intertidal infauna on juveniles of the bivalve Macoma balthica. J Sea Res 47:141–159CrossRefGoogle Scholar
  45. Hunt HL (2004) Transport of juvenile clams: effects of species and sediment grain size. J Exp Mar Biol Ecol 312:271–284CrossRefGoogle Scholar
  46. Huxham M, Richards M (2003) Can postlarval bivalves select sediment type during settlement? A field test with Macoma balthica (L.) and Cerastoderma edule (L.). J Exp Mar Biol Ecol 288:279–293CrossRefGoogle Scholar
  47. Kaiser MJ, Broad G, Hall SJ (2001) Disturbance of intertidal soft-sediment benthic communities by cockle hand raking. J Sea Res 45:119–130CrossRefGoogle Scholar
  48. Kraan C, van der Meer J, Dekinga A, Piersma T (2009) Patchiness of macrobenthic invertebrates in homogenized intertidal habitats: hidden spatial structure at a landscape scale. Mar Ecol Prog Ser 383:211–224CrossRefGoogle Scholar
  49. Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, Haese RR, Kostka JE (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, New York, pp 125–157CrossRefGoogle Scholar
  50. Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302CrossRefGoogle Scholar
  51. Le Pennec M, Beninger PG, Herry A (1995) Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comp Biochem Physiol A Physiol 111(2):183–189CrossRefGoogle Scholar
  52. Mermillod-Blondin F, Rosenberg R, Francois-Carcaillet F, Norling K, Mauclaire L (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat Microb Ecol 36:271–284CrossRefGoogle Scholar
  53. Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695PubMedCrossRefPubMedCentralGoogle Scholar
  54. Michaud E, Desrosiers G, Mermillod-Blondin F, Sundby B, Stora G (2006) The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J Exp Mar Biol Ecol 337:178–189CrossRefGoogle Scholar
  55. Montserrat F, Van Colen C, Provoost P, Milla M, Ponti M, Van den Meersche K, Ysebaert T, Herman PMJ (2009) Sediment segregation by biodiffusing bivalves. Estuar Coast Shelf Sci 83:379–391CrossRefGoogle Scholar
  56. Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55CrossRefGoogle Scholar
  57. Nieuwhof S, Herman PMJ, Dankers N, Troost K, van der Wal D (2015) Remote sensing of epibenthic shellfish using synthetic aperture radar satellite imagery. Remote Sens 7:3710–3734CrossRefGoogle Scholar
  58. Orvain F, Sauriau PG, Sygut A, Joassard L, Le Hir P (2004) Interacting effects of Hydrobia ulvae bioturbation and microphytobenthos on the erodibility of mudflat sediments. Mar Ecol Prog Ser 278:205–223CrossRefGoogle Scholar
  59. Peterson CH, Summerson HC, Fegley SR (1983) Relative efficiency of 2 clam rakes and their contrasting impacts on seagrass meadows. Fish Bull 81:429–434Google Scholar
  60. Raffaelli D, Emmerson M, Solan M, Biles C, Paterson D (2003) Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach. J Sea Res 49:133–141CrossRefGoogle Scholar
  61. Reise K (1983) Biotic enrichment of intertidal sediments by experimental aggregates of the deposit feeding bivalve Macoma balthica. Mar Ecol Prog Ser 12:229–236CrossRefGoogle Scholar
  62. Reise K (1985) Macrofauna promotes meiofauna. Tidal flat ecology. An experimental approach to species interactions. Springer, BerlinGoogle Scholar
  63. Reise K, Simon M, Herre E (2001) Density-dependent recruitment after winter disturbance on tidal flats by the lugworm Arenicola marina. Helgol Mar Res 55:161–165CrossRefGoogle Scholar
  64. Riisgard HU (1991) Suspension feeding in the polychaete Nereis diversicolor. Mar Ecol Prog Ser 70:29–37CrossRefGoogle Scholar
  65. Rossi F, Como S, Corti S, Lardicci C (2001) Seasonal variation of a deposit feeder assemblage and sedimentary organic matter in a brackish basin mudflat (Western Mediterranean, Italy). Estuar Coast Shelf Sci 53:181–191CrossRefGoogle Scholar
  66. Rossi F, Herman PMJ, Middelburg JJ (2004) Interspecific and intraspecific variation of delta C-13 and delta N-15 in deposit- and suspension-feeding bivalves (Macoma balthica and Cerastoderma edule): evidence of ontogenetic changes in feeding mode of Macoma balthica. Limnol Oceanogr 49:408–414CrossRefGoogle Scholar
  67. Rossi F, Forster RM, Montserrat F, Terlizzi A, Ysebaert T, Middelburg JJ (2007) Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves. Mar Biol 151:2077–2090PubMedPubMedCentralCrossRefGoogle Scholar
  68. Schratzberger M, Warwick RM (1999) Impact of predation and sediment disturbance by Carcinus maenas (L.) on free-living nematode community structure. J Exp Mar Biol Ecol 235:255–271CrossRefGoogle Scholar
  69. Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A Stat Mech Appl 313:513–539CrossRefGoogle Scholar
  70. Thrush SF, Pridmore RD, Hewitt JE, Cummings VJ (1991) Impact of ray feeding disturbances on sandflat macrobenthos – do communities dominated by polychaetes or shellfish respond differently. Mar Ecol Prog Ser 69:245–252CrossRefGoogle Scholar
  71. Van Colen C, Lenoir J, De Backer A, Vanelslander B, Vincx M, Degraer S, Ysebaert T (2009) Settlement of Macoma balthica larvae in response to benthic diatom films. Mar Biol 156:2161–2171CrossRefGoogle Scholar
  72. Van Colen C, De Backer A, Meulepas G, van der Wal D, Vincx M, Degraer S, Ysebaert T (2010a) Diversity, trait displacements and shifts in assemblage structure of tidal flat deposit feeders along a gradient of hydrodynamic stress. Mar Ecol Prog Ser 406:79–89CrossRefGoogle Scholar
  73. Van Colen C, Montserrat F, Vincx M, Herman PMJ, Ysebaert T, Degraer S (2010b) Macrobenthos recruitment success in a tidal flat: feeding trait dependent effects of disturbance history. J Exp Mar Biol Ecol 385:79–84CrossRefGoogle Scholar
  74. Van Colen C, Montserrat F, Vincx M, Herman PMJ, Ysebaert T, Degraer S (2010c) Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality. Mar Pollut Bull 60:178–186PubMedCrossRefPubMedCentralGoogle Scholar
  75. Van Colen C, Thrush SF, Vincx M, Ysebaert T (2013) Conditional responses of benthic communities to interference from an intertidal bivalve. PLoS One 8:e65861PubMedPubMedCentralCrossRefGoogle Scholar
  76. Van de Koppel J, Herman PMJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:1449–3461Google Scholar
  77. van der Wal D, Herman PMJ, Forster RM, TYsebaert T, Rossi F, Knaeps E, Plancke YMG, Ides SJ (2008) Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment. Mar Ecol Prog Ser 367:57–72CrossRefGoogle Scholar
  78. van Oevelen D, Soetaert K, Middelburg JJ, Herman PMJ, Moodley L, Hamels I, Moens T, Heip CHR (2006) Carbon flows through a benthic food web: integrating biomass, isotope and tracer data. J Mar Res 64:453–482CrossRefGoogle Scholar
  79. Yap WG (1977) Population biology of the Japanese Little-neck clam, Tapes philippinarum, in Kaneohe Bay, Oahu, Hawaiian Islands. Pac Sci 31:223–244Google Scholar
  80. Ysebaert T (2000) Macrozoobenthos and waterbirds in the estuarine environment: spatio-temporal patterns at different scales. PhD thesis, University of Antwerp, 180 pGoogle Scholar
  81. Ysebaert T, De Neve L, Meire P (2000) The subtidal macrobenthos in the mesohaline part of the Schelde estuary (Belgium): influenced by man? J Mar Biol Assoc UK 80:587–597CrossRefGoogle Scholar
  82. Ysebaert T, Herman PMJ, Meire P, Craeymeersch J, Verbeek H, Heip CHR (2003) Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuar Coast Shelf Sci 57:335–355CrossRefGoogle Scholar
  83. Zajac RN (2004) Macrofaunal responses to pit-mound patch dynamics in an intertidal mudflat: local versus patch-type effects. J Exp Mar Biol Ecol 313:297–315CrossRefGoogle Scholar
  84. Zwarts L, Wanink JH (1993) How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates. Neth J Sea Res 31(4):441–476CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Marine Biology Research Group, Department of BiologyUniversity of GhentGhentBelgium

Personalised recommendations