Advertisement

Microbiota: The Living Foundation

  • Daniel J. MayorEmail author
  • Barry Thornton
  • Holly Jenkins
  • Stacey L. Felgate
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 7)

Abstract

Mudflats are highly productive regions that are important to local, regional and global aspects of ecology and biogeochemistry. They sequester organic carbon, recycle nutrient elements such as nitrogen and phosphorus, release climate-active gases to the atmosphere, and provide sustenance to countless resident and migrant animals. Microorganisms that remain hidden from sight underpin all of these, and many other, crucial ecosystem functions and services. This chapter explores the roles of microorganisms in mudflat sediments, their interactions with the other residents, and some of the contemporary techniques used to study and quantify the ways in which they influence biogeochemical cycles.

References

  1. Allison SD, Martiny JBH (2008) Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519PubMedCrossRefGoogle Scholar
  2. Anderson NH, Sedell JR (1979) Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol 24:351–377CrossRefGoogle Scholar
  3. Anderson TR, Pond DW, Mayor DJ (2017) The role of microbes in the nutrition of detritivorous invertebrates: a stoichiometric analysis. Front Microbiol 7:1–13CrossRefGoogle Scholar
  4. Arnosti C (2004) Speed bumps and barricades in the carbon cycle: substrate structural effects on carbon cycling. Mar Chem 92:263–273CrossRefGoogle Scholar
  5. Arnosti C, Jørgensen BB, Sageman J, Thamdrup B (1998) Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser 165:59–70CrossRefGoogle Scholar
  6. Austin HK, Findlay SE (1989) Benthic bacterial biomass and production in the Hudson River estuary. Microb Ecol 18:105–116PubMedCrossRefGoogle Scholar
  7. Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water-column microbes in the Sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  8. Baier CR (1935) Studien zur hydrobakteriologie stehender binnengewasser. Arch Hydrobiol 29:183–264Google Scholar
  9. Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Computed with two different exchange models lie in the range of 11-18 Tg CH TM (phosphorus). North 8:465–480Google Scholar
  10. Bartels P, Cucherousset J, Steger K, Eklov P, Tranvik LJ, Hillebrand H (2012) Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 93:1173–1182PubMedCrossRefGoogle Scholar
  11. Bertics VJ, Ziebis W (2009) Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. ISME J 3:1269–1285PubMedCrossRefGoogle Scholar
  12. Bertics VJ, Ziebis W (2010) Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environ Microbiol 12:3022–3034PubMedCrossRefGoogle Scholar
  13. Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108:19473–19481PubMedCrossRefGoogle Scholar
  14. Bingemann CW, Varner JE, Martin WP (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am J 17:34–38CrossRefGoogle Scholar
  15. Bonaglia S, Nascimento FJA, Bartoli M, Klawonn I, Brüchert V (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5:5133PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:396–400CrossRefGoogle Scholar
  17. Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319CrossRefGoogle Scholar
  18. Bouillon S, Boschker HTS (2006) Bacterial carbon sources in coastal sediments: a cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3:175–185CrossRefGoogle Scholar
  19. Broadbent FE (1947) Nitrogen release and carbon loss from soil organic matter during decomposition of added plant residues. Soil Sci Soc Am Proc 12:246–249CrossRefGoogle Scholar
  20. Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485PubMedCrossRefGoogle Scholar
  21. Cai W-J (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145CrossRefGoogle Scholar
  22. Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680CrossRefGoogle Scholar
  23. Cebrián J, Duarte CM (1995) Plant growth-rate dependence of detrital carbon storage in ecosystems. Science (New York, N.Y.) 268:1606–1608CrossRefGoogle Scholar
  24. Chen X, Andersen TJ, Morono Y, Inagaki F, Jørgensen BB, Lever MA (2017) Bioturbation as a key driver behind the dominance of bacteria over archaea in near-surface sediment. Sci Rep 7:1–14CrossRefGoogle Scholar
  25. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184CrossRefGoogle Scholar
  26. Cook PLM, Revill AT, Butler ECV, Eyre BD (2004) Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary. II. Nitrogen cycling. Mar Ecol Prog Ser 280:39–54CrossRefGoogle Scholar
  27. Cook PLM, Veuger B, Böer S, Middelburg JJ (2007) Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment. Aquat Microb Ecol 49:165–180CrossRefGoogle Scholar
  28. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60:3359–3360CrossRefGoogle Scholar
  29. Currie AR, Tait K, Parry H, de Francisco-Mora B, Hicks N, Mark Osborn A, Widdicombe S, Stahl H (2017) Marine microbial gene abundance and community composition in response to ocean acidification and elevated temperature in two contrasting coastal marine sediments. Front Microbiol 8:1599PubMedPubMedCentralCrossRefGoogle Scholar
  30. Danovaro R (2000) Benthic microbial loop and meiofaunal response to oil-induced disturbance in coastal sediments: a review. Int J Environ Pollut 13:380CrossRefGoogle Scholar
  31. Del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–554CrossRefGoogle Scholar
  32. Duyl FCV, Kop AJ (1990) Seasonal patterns of bacterial production and biomass in intertidal sediments of the western Dutch Wadden Sea. Mar Ecol Prog Ser 59:249–261CrossRefGoogle Scholar
  33. Engel A, Händel N, Wohlers J, Lunau M, Grossart HP, Sommer U, Riebesell U (2011) Effects of sea surface warming on the production and composition of dissolved organic matter during phytoplankton blooms: results from a mesocosm study. J Plankton Res 33:357–372CrossRefGoogle Scholar
  34. Epstein SS (1997) Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb Ecol 34:188–198PubMedCrossRefGoogle Scholar
  35. Evrard V, Huettel M, Cook PLM, Soetaert K, Heip CHR, Middelburg JJ (2012) Importance of phytodetritus and microphyto benthos for heterotrophs in a shallow subtidal sandy sediment. Mar Ecol Prog Ser 455:13–31CrossRefGoogle Scholar
  36. Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039PubMedCrossRefGoogle Scholar
  37. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  38. Fenchel T (1970) Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol Oceanogr 15:14–20CrossRefGoogle Scholar
  39. Fenchel T (2008) The microbial loop - 25 years later. J Exp Mar Biol Ecol 366:99–103CrossRefGoogle Scholar
  40. Fenchel T, Jørgensen BB (1977) Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microb Ecol 1:1–58CrossRefGoogle Scholar
  41. France RL (2011) Leaves as “crackers”, biofilm as “peanut butter”: exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs. Oceanol Hydrobiol Stud 40:110–115CrossRefGoogle Scholar
  42. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate JM (1998) Carbon dioxide emission from European estuaries. Science 282:434–436PubMedCrossRefGoogle Scholar
  43. Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730CrossRefGoogle Scholar
  44. Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625CrossRefGoogle Scholar
  45. Fry B (2006) Stable isotope ecology. Springer, BerlinCrossRefGoogle Scholar
  46. Gilbertson WW, Solan M, Prosser JI (2012) Differential effects of microorganism-invertebrate interactions on benthic nitrogen cycling. FEMS Microbiol Ecol 82:11–22PubMedCrossRefGoogle Scholar
  47. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–228CrossRefGoogle Scholar
  48. Godbold JA, Solan M (2013) Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philos Trans R Soc 368:20130186CrossRefGoogle Scholar
  49. Godbold JA, Hale R, Wood CL, Solan M (2017) Vulnerability of macronutrients to the concurrent effects of enhanced temperature and atmospheric pCO2 in representative shelf sea sediment habitats. Biogeochemistry 135:89–10CrossRefGoogle Scholar
  50. Gontikaki E, Mayor DJ, Thornton B, Black K, Witte U (2011) Processing of 13C-labelled diatoms by a bathyal community at sub-zero temperatures. Mar Ecol Prog Ser 421:39–50CrossRefGoogle Scholar
  51. Goto N, Mitamura O, Terai H (2001) Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. J Exp Mar Biol Ecol 257:73–86PubMedCrossRefGoogle Scholar
  52. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31:147–158CrossRefGoogle Scholar
  53. Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801PubMedPubMedCentralGoogle Scholar
  54. Guckert JB, Ringelberg DB, White DC, Hanson RS, Bratina BJ (1991) Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol 137:2631–2641PubMedCrossRefGoogle Scholar
  55. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861PubMedCrossRefGoogle Scholar
  56. Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (2018) Impact of priming on global soil carbon stocks. Glob Change Biol:1–11Google Scholar
  57. Harrison PG, Mann KH (1975) Detritus formation from eelgrass (Zostera marina L.): the relative effects of fragmentation, leaching, and decay. Limnol Oceanogr 20:924–934CrossRefGoogle Scholar
  58. Haynes K, Hofmann TA, Smith CJ, Ball AS, Underwood GJC, Osborn AM (2007) Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments. Appl Environ Microbiol 73:6112–6124PubMedPubMedCentralCrossRefGoogle Scholar
  59. Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995) Production and consumption of biological particles in temperate tidal estuaries. https://pure.knaw.nl/portal/en/publications/production-and-consumption-of-biological-particles-in-temperate-tidal-estuaries(766ddea7-098f-4095-b17d-6d4eb2961dcc).html
  60. Hondeveld BJM, Nieuwland G, Van Duyl FC, Bak RPM (1995) Impact of nanoflagellate bacterivory on benthic bacterial production in the North Sea. Neth J Sea Res 34:275–287CrossRefGoogle Scholar
  61. Hubas C, Artigas LF, Davoult D (2007) Role of the bacterial community in the annual benthic metabolism of two contrasted temperate intertidal sites (Roscoff Aber Bay, France). Mar Ecol Prog Ser 344:39–48CrossRefGoogle Scholar
  62. Hylleberg J (1975) Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14:113–137CrossRefGoogle Scholar
  63. Hylleberg Kristensen J (1972) Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studied. Mar Biol 14:130–142CrossRefGoogle Scholar
  64. Joiris C, Billen G, Lancelot C, Daro MH, Mommaerts JP, Bertels A, Bossicart M, Nijs J, Hecq JH (1982) A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. Neth J Sea Res 16:260–275CrossRefGoogle Scholar
  65. Karasov WH, del Rio CM (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University Press, PrincetonGoogle Scholar
  66. Kemp PF (1990) The fate of benthic bacterial production. Aquat Sci 2:109–124Google Scholar
  67. Klein Breteler WCM, Schogt N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar Biol 135:191–198CrossRefGoogle Scholar
  68. Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302CrossRefGoogle Scholar
  69. Kujawinski EB, Longnecker K, Barott KL, Weber RJM, Kido Soule MC (2016) Microbial community structure affects marine dissolved organic matter composition. Front Mar Sci 3:1–15CrossRefGoogle Scholar
  70. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371CrossRefGoogle Scholar
  71. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498CrossRefGoogle Scholar
  72. Lacoste É, Piot A, Archambault P, McKindsey CW, Nozais C (2018) Bioturbation activity of three macrofaunal species and the presence of meiofauna affect the abundance and composition of benthic bacterial communities. Mar Environ Res 136:62–70PubMedCrossRefGoogle Scholar
  73. Laverock B, Smith CJ, Tait K, Osborn AM, Widdicombe S, Gilbert JA (2010) Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments. ISME J 4:1531–1544PubMedCrossRefGoogle Scholar
  74. Laverock B, Gilbert JA, Tait K, Osborn AM, Widdicombe S (2011) Bioturbation: impact on the marine nitrogen cycle. Biochem Soc Trans 39:315–320PubMedCrossRefGoogle Scholar
  75. Laverock B, Kitidis V, Tait K, Gilbert JA, Osborn AM, Widdicombe S (2013) Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification. Philos Trans R Soc B Biol Sci 368:20120441CrossRefGoogle Scholar
  76. Lerch TZ, Nunan N, Dignac MF, Chenu C, Mariotti A (2011) Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry 106:5–21CrossRefGoogle Scholar
  77. Löhnis F (1926) Nitrogen availability of green manures. Soil Sci 22:253–290CrossRefGoogle Scholar
  78. Lohrer AM, Thrush SF, Hewitt JE, Kraan C (2015) The up-scaling of ecosystem functions in a heterogeneous world. Sci Rep 5.  https://doi.org/10.1038/srep10349
  79. López-Urrutia Á, Morán XAG (2007) Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88:817–822PubMedCrossRefGoogle Scholar
  80. Luna GM, Manini E, Danovaro R (2002) Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Appl Environ Microbiol 68:3509–3513PubMedPubMedCentralCrossRefGoogle Scholar
  81. Luo Z, Wang E, Smith C (2015) Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems. Ecology 96:2806–2813PubMedCrossRefGoogle Scholar
  82. MacGinitie GE (1932) The role of bacteria as food for bottom animals. Science 76:490PubMedCrossRefGoogle Scholar
  83. Manini E, Fiordelmondo C, Gambi C, Pusceddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanol Acta 26:27–38CrossRefGoogle Scholar
  84. Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930Google Scholar
  85. Mayor DJ, Cook KB, Thornton B, Walsham P, Witte UFM, Zuur AF, Anderson TR (2011) Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod. Funct Ecol 25:509–518CrossRefGoogle Scholar
  86. Mayor DJ, Thornton B, Hay S, Zuur AF, Nicol GW, McWilliam JM, Witte UFM (2012a) Resource quality affects carbon cycling in deep-sea sediments. ISME J 6:1740–1748PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mayor DJ, Thornton B, Zuur AF (2012b) Resource quantity affects benthic microbial community structure and growth efficiency in a temperate intertidal mudflat. PLoS One 7:2–7CrossRefGoogle Scholar
  88. Mayor DJ, Gray NB, Elver-Evans J, Midwood AJ, Thornton B (2013) Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments. PLoS One 8:e64940PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mayor DJ, Sanders R, Giering SLC, Anderson TR (2014) Microbial gardening in the ocean’s twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. BioEssays 36:1132–1137PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mayor DJ, Gray NB, Hattich GSI, Thornton B (2017) Detecting the presence of fish farm-derived organic matter at the seafloor using stable isotope analysis of phospholipid fatty acids. Sci Rep 7:5146PubMedPubMedCentralCrossRefGoogle Scholar
  91. McCallister SL, Guillemette F, del Giorgio PA (2006) A system to quantitatively recover bacterioplankton respiratory CO2 for isotopic analysis to trace sources and ages of organic matter consumed in freshwaters. Limnol Oceanogr Methods 4:406–415CrossRefGoogle Scholar
  92. Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234CrossRefGoogle Scholar
  93. Miyatake T, Moerdijk-Poortvliet TCW, Stal LJ, Boschker HTS (2014) Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ 13C pulse-chase method. Limnol Oceanogr 59:1275–1287CrossRefGoogle Scholar
  94. Moinet GYK, Midwood AJ, Hunt JE, Whitehead D, Hannam KD, Jenkins M, Brewer MJ, Adams MA, Millard P (2018) Estimates of rhizosphere priming effects are affected by soil disturbance. Geoderma 313:1–6CrossRefGoogle Scholar
  95. Moodley L, Middelburg JJ, Soetaert K, Boschker HTS, Herman PMJ, Heip CHR (2005) Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments. J Mar Res 63:457–469CrossRefGoogle Scholar
  96. Moore JC, Berlow EL, Coleman DC, De Suiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600CrossRefGoogle Scholar
  97. Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, Crump BC, Dorrestein PC, Dyhrman ST, Hess NJ, Howe B, Longnecker K, Medeiros PM, Niggemann J, Obernosterer I, Repeta DJ, Waldbauer JR (2016) Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA 113:3143–3151PubMedCrossRefGoogle Scholar
  98. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S (1998) Closing the global N2O budget : nitrous oxide emissions through the agricultural nitrogen cycle inventory methodology. Nutr Cycling Agroecosyst 52:225–248CrossRefGoogle Scholar
  99. Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Earth Planet Sci 25:403–434PubMedCrossRefGoogle Scholar
  100. Newton J (2016) Stable isotopes as tools in ecological research. eLS. Wiley, ChichesterGoogle Scholar
  101. Oakes JM, Eyre BD (2014) Transformation and fate of microphytobenthos carbon in subtropical, intertidal sediments: potential for long-term carbon retention revealed by 13C-labeling. Biogeosciences 11:1927–1940CrossRefGoogle Scholar
  102. Oakes JM, Rysgaard S, Glud RN, Eyre BD (2016) The transformation and fate of sub-Arctic microphytobenthos carbon revealed through 13C-labeling. Limnol Oceanogr 61:2296–2308CrossRefGoogle Scholar
  103. Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58CrossRefGoogle Scholar
  104. Parkes RJ, Taylor J (1983) The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuar Coast Shelf Sci 16CrossRefGoogle Scholar
  105. Parkes RJ, Dowling NJE, White DC, Herbert RA, Gibson GR (1993) Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol Lett 102:235–250CrossRefGoogle Scholar
  106. Parr TB, Cronan CS, Ohno T, Findlay SEG, Smith SMC, Simon KS (2015) Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnol Oceanogr 60:885–900CrossRefGoogle Scholar
  107. Perry GJ, Volkman JK, Johns RB (1979) Fatty acids of bacterial origin in contempary marine sediments. Geochim Cosmochim Acta 43:1715–1725CrossRefGoogle Scholar
  108. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  109. Phillips NW (1984) Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull Mar Sci 35:283–298Google Scholar
  110. Plante CJ, Jumars PA, Baross JA (1990) Digestive associations between marine detritivores and bacteria. Annu Rev Ecol Syst 21:93–127CrossRefGoogle Scholar
  111. Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204CrossRefGoogle Scholar
  112. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  113. Pozzato L, Van Oevelen D, Moodley L, Soetaert K, Middelburg JJ (2013) Sink or link? The bacterial role in benthic carbon cycling in the Arabian Sea’s oxygen minimum zone. Biogeosciences 10:6879–6891CrossRefGoogle Scholar
  114. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384PubMedCrossRefGoogle Scholar
  115. Pusceddu A, Fiordelmondo C, Danovaro R (2005) Sediment resuspension effects on the benthic microbial loop in experimental microcosms. Microb Ecol 50:602–613PubMedCrossRefGoogle Scholar
  116. Schmidt JL, Deming JW, Jumars PA, Keil RG (1998) Constancy of bacterial abundance in surficial marine sediments. Limnol Oceanogr 43:976–982CrossRefGoogle Scholar
  117. Shen H, Jiang G, Wan X, Li H, Qiao Y, Thrush S, He P (2017) Response of the microbial community to bioturbation by benthic macrofauna on intertidal flats. J Exp Mar Biol Ecol 488:44–51CrossRefGoogle Scholar
  118. Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim Cosmochim Acta 40:831–845CrossRefGoogle Scholar
  119. Smith DJ, Underwood GJC (1998) Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr 43:1578–1591CrossRefGoogle Scholar
  120. Stock W, Heylen K, Sabbe K, Willems A, De Troch M, Savage C (2014) Interactions between benthic copepods, bacteria and diatoms promote nitrogen retention in intertidal marine sediments. PLoS One 9:e111001PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tada K, Koomklang J, Ichimi K, Yamaguchi H (2017) Negligible effect of the benthic fauna on measuring the nutrient upward fluxes from coastal sediments. J Oceanogr 73:397–402CrossRefGoogle Scholar
  122. Taylor J, Parkes RJ (1983) The cellular fatty-acids of the sulfate-reducing bacteria, Desulfobacter Sp, Desulfobulbus Sp and Desulfovibrio-Desulfuricans. J Gen Microbiol 129:3303–3309Google Scholar
  123. Teece MA, Fogel ML, Dollhopf ME, Nealson KH (1999) Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org Geochem 30:1571–1579CrossRefGoogle Scholar
  124. Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49:20–46CrossRefGoogle Scholar
  125. Tunlid A, Ringelberg DB, Phelps TJ, Low C, White DC (1989) Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry. J Microbiol Methods 10:139–153CrossRefGoogle Scholar
  126. Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153CrossRefGoogle Scholar
  127. Van Colen C, Underwood GJC, Serôdio J, Paterson DM (2014) Ecology of intertidal microbial biofilms: mechanisms, patterns and future research needs. J Sea Res 92:2–5CrossRefGoogle Scholar
  128. Vestal JR, White DC (1989) Lipid analysis in microbial ecology. BioScience 39:535–541PubMedCrossRefGoogle Scholar
  129. White DC (1988) Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity. Arch Hydrobiol 31:1–18Google Scholar
  130. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62PubMedCrossRefGoogle Scholar
  131. White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol 17:185–196CrossRefGoogle Scholar
  132. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  133. Yingst JY, Rhoads DC (1980) The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. Marine benthic dynamics. University of South Carolina Press, ColumbiaGoogle Scholar
  134. Zetsche E, Thornton B, Midwood AJ, Witte U (2011) Utilisation of different carbon sources in a shallow estuary identified through stable isotope techniques. Cont Shelf Res 31:832–840CrossRefGoogle Scholar
  135. ZoBell CE, Feltham CB (1942) The bacterial flora of a marine mud flat as an ecological factor. Ecology 23:69–78CrossRefGoogle Scholar
  136. Zou K, Thébault E, Lacroix G, Barot S (2016) Interactions between the green and brown food web determine ecosystem functioning. Funct Ecol 30:1454–1465CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniel J. Mayor
    • 1
    • 2
    • 3
    Email author
  • Barry Thornton
    • 2
  • Holly Jenkins
    • 3
  • Stacey L. Felgate
    • 3
  1. 1.National Oceanography CentreSouthamptonUK
  2. 2.James Hutton InstituteAberdeenUK
  3. 3.University of SouthamptonSouthamptonUK

Personalised recommendations