Advertisement

Geological, Physical and Chemical Foundations

  • Jerónimo Pan
  • Paula D. Pratolongo
  • Diana G. Cuadrado
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 7)

Abstract

Modern tidal flats are coastal geomorphological features with a recent geologic history (Holocene period, 10,000 YBP) that are found globally, under different climatic, hydrodynamic and sedimentological regimes. They are primarily characterized by fine-grained sedimentary deposits (silt and clay) that present unique physical and chemical properties, in comparison to other sediment types. The input of sediments to mudflats can be either riverine, from offshore, and/or from the erosion of coastal sedimentary deposits. Tides and tidal currents are the dominant hydrodynamic forces shaping mudflats, with wave action playing a secondary role. The occurrence of intermittent or temporary flooding and the presence of variable redox (oxidation-reduction) conditions are typical features of mudflat sediments. The temporally and spatially variable changes from aerobic, oxidized states of mudflat sediment and porewater to anaerobic, reduced states drive particular redox reactions that govern the characteristic chemical processes and biogeochemical functioning that distinguish mudflats from other coastal settings. Mudflat sediments are not inert; the high surface area:volume ratio of fine-grained sediment particles offers a vast and structurally-complex landscape for colonization by microbes that rely on surface-adhesion processes. Photosynthetic microalgae belonging to several taxonomic groups (collectively known as microphytobenthos MPB) are the dominant microorganisms growing in association with sedimentary particles, and forming a biofilm layer on top. In addition to physical forces, living benthic communities modify sediment properties as part of their normal physiology (micro- and macro-biota) and feeding, movement, and burrowing activity (meio- and macrofauna), especially in relation to stabilization and destabilization processes. These may ultimately have marked effects on sediment stability and geomorphology. The interplay between such biological processes and sediments in mudflats is currently an active field of research.

References

  1. Admiraal W, Peletier H, Brouwer T (1984) The seasonal succession patterns of diatom species on an intertidal mudflat: an experimental analysis. Oikos 42:30–40CrossRefGoogle Scholar
  2. Anthony EJ, Gardel A, Gratiot N, Proisy C, Allison MA, Dolique F, Fromard F (2010) The Amazon-influenced muddy coast of South America: a review of mud-bank-shoreline interactions. Earth Sci Rev 103:99–121CrossRefGoogle Scholar
  3. Anthony EJ, Gardel A, Proisy C, Fromard F, Gensac E, Peron C, Walcker R, Lesourd S (2013) The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapá-Guianas coast, South America: a three-point research agenda. J South Am Earth Sci 44:18–24CrossRefGoogle Scholar
  4. Archer AW (2013) World’s highest tides: hypertidal coastal systems in North America, South America and Europe. Sediment Geol 284–285:1–25CrossRefGoogle Scholar
  5. Bassoullet P, Le Hir P, Gouleau D, Robert S (2000) Sediment transport on an intertidal mudflat: field investigations and estimation of fluxes within the “Baie de Marennes-Oleron” (France). Cont Shelf Res 20:1635–1653CrossRefGoogle Scholar
  6. Bertness MD (1999) The ecology of Atlantic shorelines. Sinauer, SunderlandGoogle Scholar
  7. Bloomfield C (1952) The distribution of iron and aluminium oxides in gley soils. J Soil Sci 3:167–171CrossRefGoogle Scholar
  8. Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landforms 26:1237–1248CrossRefGoogle Scholar
  9. Carling PA, Williams JJ, Croudace IW, Amos CL (2009) Formation of mud ridge and runnels in the intertidal zone of the Severn Estuary, UK. Cont Shelf Res 29:1913–1926CrossRefGoogle Scholar
  10. Carter RWG (2013) Coastal environments. Academic Press, LondonGoogle Scholar
  11. Chang TS, Flemming BW, Tilch E, Bartholoma A, Wostmann R (2006) Late Holocene stratigraphic evolution of a back-barrier tidal basin in the East Frisian Wadden Sea, southern North Sea: transgressive deposition and its preservation potential. Facies 52:329–340CrossRefGoogle Scholar
  12. Chernetsky A, Schuttelaars HM, Talke SA (2010) The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60:1219–1241CrossRefGoogle Scholar
  13. Cuadrado DG, Bournod CN, Pan J, Carmona NB (2013) Microbially-induced sedimentary structures (MISS) as record of storm action in supratidal modern estuarine setting. Sediment Geol 296:1–8CrossRefGoogle Scholar
  14. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464PubMedCrossRefGoogle Scholar
  15. Davies RA (2012) Tidal signatures and their preservation potential in stratigraphic sequences. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 35–56CrossRefGoogle Scholar
  16. de Brouwer JFC, Bjelic S, de Deckere EMGT, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, The Netherlands). Cont Shelf Res 20:1159–1177CrossRefGoogle Scholar
  17. de Brouwer JFC, de Deckere EMGT, Stal LJ (2003) Distribution of extracellular carbohydrates in three intertidal mudflats in Western Europe. Estuar Coast Shelf Scince 56:313–324CrossRefGoogle Scholar
  18. de Brouwer JFC, Wolfstein K, Ruddy GK, Jones TE, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol 49:501–512PubMedCrossRefGoogle Scholar
  19. de Jonge VN, Colijn F (1994) Dynamics of microphytobenthos biomass in the Ems estuary. Mar Ecol Prog Ser 104:185–196CrossRefGoogle Scholar
  20. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol 28:73–153Google Scholar
  21. DeFlaun MF, Mayer LM (1983) Relationships between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr 28:873–881CrossRefGoogle Scholar
  22. Deloffre J, Lafite R, Lesueur P, Verney R, Lesourd S, Cuvilliez A, Taylor J (2006) Controlling factors of rhythmic sedimentation processes on an intertidal estuarine mudflat - Role of the turbidity maximum in the macrotidal Seine estuary, France. Mar Geol 235:151–164CrossRefGoogle Scholar
  23. Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167PubMedCrossRefGoogle Scholar
  24. Diaz RJ, Trefry JH (2006) Comparison of sediment profile image data with profiles of oxygen and Eh from sediment cores. J Mar Syst 62:164–172CrossRefGoogle Scholar
  25. Donadi S, van der Heide T, van der Zee EM, Eklöf JS, van de Koppel J, Weerman EJ, Piersma T, Olff H, Klemens Eriksson B (2013) Cross-habitat interactions among bivalve species control community structure on intertidal flats. Ecology 94:489–498PubMedCrossRefGoogle Scholar
  26. Draut AE, Kineke GC, Huh OK, Grymes JM III, Westphal KA, Moeller CC (2005) Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Mar Geol 214:27–47CrossRefGoogle Scholar
  27. Dyer KR (1998) The typology of intertidal mudflats. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone. Geological Society, London, pp 11–24Google Scholar
  28. Dyer KR, Christie MC, Wright EW (2000) The classification of intertidal mudflats. Cont Shelf Res 20:1039–1060CrossRefGoogle Scholar
  29. Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Netherlands J Sea Res 20:183–199CrossRefGoogle Scholar
  30. Fenchel TM, Jørgensen BB (1977) Detritus food chains of aquatic ecosystems: the role of bacteria. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, pp 1–58Google Scholar
  31. Fenchel TM, Riedl RJ (1970) The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar Biol 7:255–268CrossRefGoogle Scholar
  32. Fidalgo e Costa P, Brotas V, Cancela da Fonseca L (2002) Physical characterization and microphytobenthos biomass of estuarine and lagoon environments of the Southwest coast of Portugal. Limnetica 21:69–79Google Scholar
  33. Flemming BW (2002) Geographic distribution of muddy coasts. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 99–201CrossRefGoogle Scholar
  34. Flemming BW (2012) Siliciclastic back-barrier tidal flats. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 231–267CrossRefGoogle Scholar
  35. Folk RL (1968) Petrology of sedimentary rocks. Hemphills, AustinGoogle Scholar
  36. Galehouse JS (1971) Sedimentation analysis. In: Carver RE (ed) Procedures in sedimentary petrology. Wiley-Interscience, New York, pp 69–94Google Scholar
  37. Gao S (2009) Geomorphology and sedimentology of tidal flats. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 295–316Google Scholar
  38. Gao S, Zhu DK (1988) The profile of Jiangsu’s mud coast. J Nanjing Univ (Natural Science Version) 21:75–84 (in Chinese, with English abstract)Google Scholar
  39. Glockzin M, Zettler ML (2008) Spatial macrozoobenthic distribution patterns in relation to major environmental factors - a case study from the Pomeranian Bay (southern Baltic Sea). J Sea Res 59:144–161CrossRefGoogle Scholar
  40. Grim RE (1968) Clay mineralogy, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  41. Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie van Leeuwenhoek 66:165–185PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hayes MO (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier islands. Academic Press, New York, pp 1–27Google Scholar
  43. Hsu TJ, Chen SN, Ogston AS (2013a) The landward and seaward mechanisms of fine-sediment transport across intertidal flats in the shallow-water region-A numerical investigation. Cont Shelf Res 60:85–98CrossRefGoogle Scholar
  44. Hsu WY, Hwung HH, Hsu TJ, Torres-Freyermuth A, Yang RY (2013b) An experimental and numerical investigation on wave-mud interactions. J Geophys Res Oceans 118:1126–1141CrossRefGoogle Scholar
  45. Hunting ER, Kampfraath AA (2013) Contribution of bacteria to redox potential (Eh) measurements in sediments. Int J Environ Sci Technol 10:55–62CrossRefGoogle Scholar
  46. Ingram RL (1971) Sieve analysis. In: Carver RE (ed) Procedures in sedimentary petrology. Wiley-Interscience, New York, pp 47–67Google Scholar
  47. Jesus B, Brotas V, Ribeiro L, Mendes CR, Cartaxana P, Paterson DM (2009) Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont Shelf Res 29:1624–1634CrossRefGoogle Scholar
  48. Keunen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326CrossRefGoogle Scholar
  49. Kiene RP (1990) Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl Environ Microbiol 56:3292–3297PubMedPubMedCentralGoogle Scholar
  50. Kirby R (1992) Effects of sea-level rise on muddy coastal margins. In: Prandle D (ed) Dynamics and exchanges in estuaries and the coastal zone. American Geophysical Union, Washington, pp 313–334CrossRefGoogle Scholar
  51. Kirby R (2000) Practical implications of tidal flat shape. Cont Shelf Res 20:1061–1077CrossRefGoogle Scholar
  52. Kirby R (2002) Distinguishing accretion from erosion-dominated muddy coasts. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 61–81CrossRefGoogle Scholar
  53. Komada T, Burdige DJ, Li H-L, Magen C, Chanton JP, Cada AK (2016) Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochim Cosmochim Acta 176:259–278CrossRefGoogle Scholar
  54. Komar PD (1998) Beach processes and sedimentation, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  55. Konert M, Vandenberghe J (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44:523–535CrossRefGoogle Scholar
  56. Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24CrossRefGoogle Scholar
  57. Le Hir P, Roberts W, Cazaillet O, Christie M, Bassoullet P, Bacher C (2000) Characterization of intertidal flat hydrodynamics. Cont Shelf Res 20:1433–1459CrossRefGoogle Scholar
  58. Libes SM (1992) An introduction to marine biogeochemistry. Wiley, New YorkGoogle Scholar
  59. Lisboa Cohen MC, Ruiz Pessenda LC, Behling H, Rossetti DF, França MC, Guimarães JTF, Friaes Y, Beltrão Smith C (2012) Holocene palaeoenvironmental history of the Amazonian mangrove belt. Q Sci Rev 55:50–58CrossRefGoogle Scholar
  60. Ljungdahl LG, Eriksson K-E (1985) Ecology of microbial cellulose degradation. In: Marshall KC (ed) Advances in microbial ecology. Plenum Press, New York, pp 237–299CrossRefGoogle Scholar
  61. Llobet-Brossa E, Rabus R, Böttcher ME, Könneke M, Finke N, Schramm A, Meyer RL, Grötzschel S, Rosselló-Mora R, Amann R (2002) Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat Microb Ecol 29:211–226CrossRefGoogle Scholar
  62. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulfide and the natural sulfur cycle. Nature 237:452–453CrossRefGoogle Scholar
  63. MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:186–201CrossRefGoogle Scholar
  64. Madsen KN, Nilson P, Sundbäck K (1993) The influence of benthic microalgae on the stability of a subtidal shallow water sediment. J Exp Mar Biol Ecol 170:159–177CrossRefGoogle Scholar
  65. Mann KH (2009) Ecology of coastal waters: with implications for management, 2nd edn. Blackwell Science, MaldenGoogle Scholar
  66. Manning AJ, Langston WJ, Jonas PJC (2010) A review of sediment dynamics in the Severn Estuary: influence of flocculation. Mar Pollut Bull 61:37–51PubMedCrossRefGoogle Scholar
  67. McCave IN, Bryant RJ, Cook HF, Coughanowr CA (1986) Evaluation of a laser-diffraction-size analyzer for use with natural sediments. J Sediment Petrol 56:561–564CrossRefGoogle Scholar
  68. Metha AJ (2002) Mudshore dynamics and controls. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 19–60Google Scholar
  69. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New YorkGoogle Scholar
  70. Molongoski JJ, Klug MJ (1976) Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments. Appl Environ Microbiol 31:83–90PubMedPubMedCentralGoogle Scholar
  71. Moodley L, Van der Zwaan GJ, Rutten GMW, Boom RCE, Kempers AJ (1998) Subsurface activity of benthic Foraminifera in relation to porewater oxygen content: laboratory experiments. Mar Micropaleontol 34:91–106CrossRefGoogle Scholar
  72. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184CrossRefGoogle Scholar
  73. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454PubMedCrossRefGoogle Scholar
  74. Noffke N (1998) Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea). Geology 26:879–882CrossRefGoogle Scholar
  75. Noffke N, Christian D, Wacey D, Hazen RM (2013a) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser formation, Pilbara, Western Australia. Astrobiology 13:1103–1124PubMedPubMedCentralCrossRefGoogle Scholar
  76. Noffke N, Decho AW, Stoodley P (2013b) Slime through time: the fossil record of prokaryote evolution. Palaios 28:1–5CrossRefGoogle Scholar
  77. Oliveira Fernandes S, Javanaud C, Michotey VD, Guasco S, Anschutz P, Bonin P (2016) Coupling of bacterial nitrification with denitrification and anammox supports N removal in intertidal sediments (Arcachon Bay, France). Estuar Coast Shelf Sci 179:39–50CrossRefGoogle Scholar
  78. Owens NJ, Christofi N, Stewart WD (1979) Primary production and nitrogen cycling in an estuarine environment. Cyclic phenomena in marine plants and animals. In: Proceedings of the 13th European marine biology symposium, Isle of Man, 27 Sept–4 Oct 1978Google Scholar
  79. Pan J, Bournod CN, Cuadrado DG, Vitale A, Piccolo MC (2013a) Interaction between estuarine microphytobenthos and physical forcings: the role of atmospheric and sedimentary factors. Int J Geosci 4:352–361CrossRefGoogle Scholar
  80. Pan J, Bournod CN, Pizani NV, Cuadrado DG, Carmona NB (2013b) Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina). Geomicrobiol J 30:665–674CrossRefGoogle Scholar
  81. Pan J, Cuadrado DG, Bournod CN (2017) Diatom-driven recolonization of microbial-mat dominated siliciclastic tidal flat sediments. FEMS Microbiol Ecol 93:fix111Google Scholar
  82. Paterson DM, Black KS (1999) Water flow, sediment dynamics and benthic biology. Adv Ecol Res 29:155–193CrossRefGoogle Scholar
  83. Pejrup M, Larsen M, Edelvang K (1997) A fine grained sediment budget for the Sylt-Rømø tidal basin. Helgoländer Meeresuntersuchungen 51:253–268CrossRefGoogle Scholar
  84. Pereira PS, Calliari LJ, Holman R, Holland KT, Guedes RMC, Amorin CK, Cavalcanti PG (2011) Video and field observations of wave attenuation in a muddy surf zone. Mar Geol 279:210–221CrossRefGoogle Scholar
  85. Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands J Sea Res 1:148–190CrossRefGoogle Scholar
  86. Pritchard D (2005) Suspended sediment transport along an idealised tidal embayment: settling lag, residual transport and the interpretation of tidal signals. Ocean Dyn 55:124–136CrossRefGoogle Scholar
  87. Pritchard D, Hogg AJ (2003) Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. J Geophys Res 108:1–15CrossRefGoogle Scholar
  88. Ransom B, Bennett RJ, Baerwald R, Shea K (1997) TEM study of in situ OM on continental shelf margins: occurrence and the “monolayer” hypothesis. Mar Geol 138:1–9CrossRefGoogle Scholar
  89. Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC, Boca RatonCrossRefGoogle Scholar
  90. Richards FA (1965) Anoxic basins and fjords. Chemical oceanography. Academic Press, LondonGoogle Scholar
  91. Riethmüller R, Heineke M, Kühl H, Keuker-Rüdiger R (2000) Chlorophyll a concentration as an index of sediment surface stabilisation by microphytobenthos? Cont Shelf Res 20:1351–1372CrossRefGoogle Scholar
  92. Roberts W, Le Hir P, Whitehouse RJS (2000) Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Cont Shelf Res 20:1079–1097CrossRefGoogle Scholar
  93. Rogers KG, Goodbred SL Jr (2014) The Sundarbans and Bengal Delta: the World’s largest tidal mangrove and delta system. In: Kale VS (ed) Landscapes and landforms of India. Springer, Dordrecht, pp 181–187CrossRefGoogle Scholar
  94. Rosenberg R, Grémare A, Duchêne JC, Frank M (2008) 3D visualization and quantification of marine benthic biogenic structures and particle transport utilizing computer-aided tomography. Mar Ecol Prog Ser 363:171–182CrossRefGoogle Scholar
  95. Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A 313:513–539CrossRefGoogle Scholar
  96. Shchepetkina A, Gingras MK, Zonneveld JP, Pemberton SG (2016) Sedimentary fabrics of the macrotidal, mud-dominated, inner estuary to fluvio-tidal transition zone, Petitcodiac River estuary, New Brunswick, Canada. Sediment Geol 333:147–163CrossRefGoogle Scholar
  97. Solan M, Kennedy R (2002) Observation and quantification of in situ animal-sediment relations using timelapse sediment profile imagery (t-SPI). Mar Ecol Prog Ser 228:179–191CrossRefGoogle Scholar
  98. Staats N, Stal LJ, de Winder B, Lr M (2000a) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269CrossRefGoogle Scholar
  99. Staats N, Stal LJ, Mur LR (2000b) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J Exp Mar Biol Ecol 249:13–27PubMedCrossRefGoogle Scholar
  100. Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245CrossRefGoogle Scholar
  101. Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats. Berichte-Forschungszentrum Terramare 12:109–111Google Scholar
  102. Stal LJ, de Brouwer JFC (2005) Diatom biofilms and the stability of intertidal mudflats. Geophys Res Abstr 7:20–28Google Scholar
  103. Stoodley P (2016) Biofilms: flow disrupts communication. Nat Microbiol 1:1–2CrossRefGoogle Scholar
  104. Sturdivant SK, Díaz RJ, Cutter GR (2012) Bioturbation in a declining oxygen environment, in situ observations from Wormcam. PLoS One 7:e34539PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sundbäck K, Miles A, Hulth S, Svenson A (2003) Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Mar Ecol Prog Ser 246:115–126CrossRefGoogle Scholar
  106. Sundby B, Anderson LG, Hall POJ, Iverfeldt A, Rutgers van der Loeff MM, Westerlund SFG (1986) The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim Cosmochim Acta 50:1281–1288CrossRefGoogle Scholar
  107. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318PubMedPubMedCentralCrossRefGoogle Scholar
  108. Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552PubMedCrossRefGoogle Scholar
  110. Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonia. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 197–244Google Scholar
  111. Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48:569–583PubMedCrossRefGoogle Scholar
  112. Underwood GJC (1994) Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diatom Res 9:451–472CrossRefGoogle Scholar
  113. Underwood GJC, Paterson DM (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn Estuary. J Mar Biol Assoc UK 73:871–887CrossRefGoogle Scholar
  114. Valdemarsen T, Kristensen E, Holmer M (2009) Metabolic threshold and sulfide-buffering in diffusion controlled marine sediments impacted by continuous organic enrichment. Biogeochemistry 95:335–353CrossRefGoogle Scholar
  115. van Maren DS, Winterwerp JC (2013) The role of flow asymmetry and mud properties on tidal flat sedimentation. Cont Shelf Res 60S:71–84CrossRefGoogle Scholar
  116. Vepraskas MJ, Faulkner SP (2001) Redox chemistry of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes and classification. Lewis, Boca Raton, pp 85–105Google Scholar
  117. Verney R, Lafite R, Brun-Cottan J-C (2009) Flocculation potential of estuarine particles: the importance of environmental factors and of the spatial and seasonal variability of suspended particulate matter. Estuar Coasts 32:678–693CrossRefGoogle Scholar
  118. Vos PC, de Wolf H (1993) Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269(270):285–296CrossRefGoogle Scholar
  119. Wang Y (1983) The mudflat system of China. Can J Fish Aquat Sci 40(S1):160–171CrossRefGoogle Scholar
  120. Wang P (2012) Principles of sediment transport applicable in tidal environments. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, New York, pp 19–35CrossRefGoogle Scholar
  121. Wang Y, Healy T (2002) Definition, properties, and classification of muddy coasts. In: Healy T, Wang Y, Healy A (eds) Muddy coasts of the World: processes, deposits and function. Elsevier, Amsterdam, pp 9–18CrossRefGoogle Scholar
  122. Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87CrossRefGoogle Scholar
  123. Webster IT, Ford PW, Hodgson B (2002) Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon. Estuaries 25:540–551CrossRefGoogle Scholar
  124. Wells JT (1983) Dynamics of coastal fluid muds in low-, moderate-, and high-tide-range environments. Can J Fish Aquat Sci 40:130–142CrossRefGoogle Scholar
  125. Wells JT, Shanks AL (1987) Observations and geologic significance of marine snow in a shallow-water, partially enclosed marine embayment. J Geophys Res 92:13185–13190CrossRefGoogle Scholar
  126. Wiese W, Rheinheimer G (1978) Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb Ecol 4:175–188CrossRefGoogle Scholar
  127. Wilson CA, Goodbred SL Jr (2015) Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Annu Rev Mar Sci 7:67–88CrossRefGoogle Scholar
  128. Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22:1339–1360CrossRefGoogle Scholar
  129. Wolanski E (2006) The sediment trapping efficiency of the macro-tidal Daly Estuary, tropical Australia. Estuar Coast Shelf Sci 69:291–298CrossRefGoogle Scholar
  130. Wolanski E, Chappell J, Ridd P, Vertessy R (1988) Fluidization of mud in estuaries. J Geophys Res 93:2351–2361CrossRefGoogle Scholar
  131. Yang X, Zhang Q, Zhang J, Tan F, Wu Y, Zhang N, Yang H, Pang Q (2015) An integrated model for three-dimensional cohesive sediment transport in storm event and its application on Lianyungang Harbor, China. Ocean Dyn 65:395–417CrossRefGoogle Scholar
  132. Yao H (2013) Characterizing landuse changes in 1990-2010 in the coastal zone of Nantong, Jiangsu province, China. Ocean Coast Manage 71:108–115CrossRefGoogle Scholar
  133. Zhang Q, Gong Z, Zhang C, Townend I, Jin C, Li H (2016) Velocity and sediment surge: what do we see at times of very shallow water on intertidal mudflats? Cont Shelf Res 113:10–20CrossRefGoogle Scholar
  134. Zheng Y, Hou L, Liu M, Liu Z, Li X, Lin X, Yin G, Gao J, Yu C, Wang R, Jiang X (2016) Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes. Sci Rep 6:21338PubMedPubMedCentralCrossRefGoogle Scholar
  135. ZoBell CE, Feltham CB (1942) The bacterial flora of a marine mud flat as an ecological factor. Ecology 23:69–78CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jerónimo Pan
    • 1
    • 2
  • Paula D. Pratolongo
    • 3
    • 4
  • Diana G. Cuadrado
    • 3
    • 5
  1. 1.Instituto de Geologia de Costas y del Cuaternario (IGCyC, UNMdP/CIC)Mar del PlataArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET/UNMdP)Mar del PlataArgentina
  3. 3.Instituto Argentino de Oceanografía (IADO, CONICET/UNS)Bahía BlancaArgentina
  4. 4.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  5. 5.Departamento de GeologíaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina

Personalised recommendations