Advertisement

Mudflat Fishing

  • Peter G. BeningerEmail author
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 7)

Abstract

Mudflat fishing is certainly one of the oldest human activities, and it probably contributed heavily to both our cognitive development and the settlement pattern of human populations still evident today. It is characterized by simple gear for raking or digging, individual effort, relatively small catches, and micro-regulation. It may be divided into two broad categories: professional fishing (catches are sold) and recreational/subsistence fishing (catches are not sold). The recreational fishery may be likened to the sport fishing industry, in that the economic impact of mudflat fishing includes a substantial tourism component. Although difficult to evaluate precisely, methods used in the tourism and sport fishing industries allow ball-park evaluations of the economic impact of recreational mudflat fishing in developed countries.

Environmental impacts of mudflat fishing include resource depletion, as well as reduced densities of non-target macrofauna, altered spatial distributions of both macro-and meiofauna, and geochemical modifications in the sediment. Mudflat fishing impacts are likely to be site- and intertidal level-specific, and choice of the appropriate scale of study is problematic. Little attention has been paid to the effects of mudflat fishing on high-profile, declining species such as shorebirds, and this is an urgent research need. Given the long history of mudflat fishing, the system seems to have been relatively resilient up to the present time; this may change in the face of increased pressure from an exponentially-increasing world population.

References

  1. Alberini A, Kahn J (2009) Handbook on contingent valuation. Edward Elgar, Northampton, 448 pGoogle Scholar
  2. Ambrose WG, Dawson M, Gailey C, Ledkovsky P, O'Leary S, Tassinari Bvogel H, Wilson C (1998) Effects of baitworm digging on the soft-shelled clam Mya arenaria, in Maine: shell damage and exposure on the sediment surface. J Shellfish Res 17:1043–1049Google Scholar
  3. Anderson FE, Meyer LM (1986) The interaction of tidal currents on a disturbed intertidal bottom with a resulting change in particulate matter quantity, texture and food quality. Estuar Coast Shelf Sci 22:19–29CrossRefGoogle Scholar
  4. Appéré G (2004) L’évaluation des actifs à usage récréatif: la méthode contingente des coûts de transport. Revue d’Économie Régionale et Urbaine 2004(1):81–106CrossRefGoogle Scholar
  5. Appéré G, Bonnieux F (2003) Pêche récréative et risques sanitaires: le cas des coquillages. INRA Sciences Sociales: Recherches en Economie et Sociologie Rurales N° 3/02:1–4Google Scholar
  6. Beal BF, Vencile KW (2001) Short term effects of commercial clam (Mya arenaria) and worm (Glycera dibranchiata) harvesting on the survival and growth of juveniles of the soft-shell clam. J Shellfish Res 20:1145–1157Google Scholar
  7. Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology: theory and practice. Ecology 65:1–13CrossRefGoogle Scholar
  8. Bender MG, Machado GR, Silva PJA, Floeter S, Monteiro-Netto C, Luiz OJ, Ferreira CEL (2014) Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the southwestern Atlantic. PLoS One 9:e110332PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beninger PG, Boldina I (2014) Fine-scale spatial distribution of the temperate infaunal bivalve Tapes (=Ruditapes) philippinarum (Adams and reeve) on fished and unfished intertidal mudflats. J Exp Mar Biol Ecol 457:128–134CrossRefGoogle Scholar
  10. Berkes F (2009) Revising the commons paradigm. J Nat Resour Policy Res 1:261–264CrossRefGoogle Scholar
  11. Berkes F, Colding J, Folke C (2000) Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl 10:1251–1262CrossRefGoogle Scholar
  12. Beukema JJ (1995) Long-term effects of mechanical harvesting of lugworms Arenicola marina on the zoobenthic community of a tidal flat in the Wadden Sea. Neth J Sea Res 33:219–227CrossRefGoogle Scholar
  13. Beurier JP (2014) Droits maritimes, 3ième edn. Dallioz Action, ParisGoogle Scholar
  14. Blake RW (1979) Exploitation of a natural population of Arenicola marina (L.) from the North-East Coast of England. J Appl Ecol 16:663–670CrossRefGoogle Scholar
  15. Bockstael NE, Strand IE, McConnell KE, Arsanjani F (1990) Sample selection bias in the estimation of recreation demand functions: an application to sportfishing. Land Econ 66:40–49CrossRefGoogle Scholar
  16. Boldina I (2011) Cadre juridique des activités de la pêche à pied des coquillages sur le littoral atlantique français. Annuaire de droit maritime et océanique 29:143–179Google Scholar
  17. Boldina I, Beninger PG (2013) Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast. J Sea Res 76:193–200CrossRefGoogle Scholar
  18. Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40CrossRefGoogle Scholar
  19. Boldina I, Beninger PG, Le Coz M (2014) Effect of long-term mechanical perturbation on intertidal soft-bottom meiofaunal community spatial structure. J Sea Res 85:85–91CrossRefGoogle Scholar
  20. Bontems P, Rotillon G (2007) Economie de l'environnement, 3ème édn. Editions La Découverte, Collections Repères, Paris, 120 pGoogle Scholar
  21. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832CrossRefGoogle Scholar
  22. Brown G Jr, Mendelsohn R (1984) The hedonic travel cost method. Rev Econ Stat 66:427–433CrossRefGoogle Scholar
  23. Brown B, Wilson WH Jr (1997) The role of commercial digging of mudflats as an agent for change of infaunal intertidal populations. J Exp Mar Biol Ecol 218:49–61CrossRefGoogle Scholar
  24. Cameron TA (1992) Combining contingent valuation and travel cost data for the valuation of nonmarket goods. Land Econ 68:302–317CrossRefGoogle Scholar
  25. Cameron AC, Trivedi PK (2013) Regression analysis of count data, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Carr L, Mendelsohn R (2003) Valuing coral reefs: a travel cost analysis of the great barrier reef. AMBIO J Hum Environ 32:353–357CrossRefGoogle Scholar
  27. Carter DW, Liese C (2010) Hedonic valuation of sportfishing harvest. Mar Resour Econ 25:391–407CrossRefGoogle Scholar
  28. Clawson M (1959) Methods of measuring the demand for and value of outdoor recreation. Reprint no 10. Resources for the Future, WashingtonGoogle Scholar
  29. Coles JM, Taylor JJ (1969) The excavation of a midden in the Culbin Sands, Morayshire. Proc Soc Antiq Scot 102:87–100Google Scholar
  30. Constantino R, Gaspar MB, Tata-Regala J, Carvalho S, Cúrdia J, Drago T, Taborda R, Monteiro CC (2009) Clam dredging effects and subsequent recovery of benthic communities at different depth ranges. Mar Environ Res 67:89–99PubMedCrossRefGoogle Scholar
  31. Cortés-Sánchez M, Morales-Muñiz A, Simón-Vallejo MD, Lozano-Francisco MC, Vera-Peláez JL, Finlayson C, Rodríguez-Vidal J, Delgado-Huertas A, Jiménez-Espejo FJ, Martínez-Ruiz F, Martínez-Aguirre MA, Pascual-Granged AJ, Bergadà-Zapata MM, Gibaja-Bao JF, Riquelme-Cantal JA, López-Sáez JA, Rodrigo-Gámiz M, Sakai S, Sugisaki S, Finlayson G, Fa DA, Bicho NF (2011) Earliest known use of marine resources by Neanderthals. PLoS One 6(9):e24026.  https://doi.org/10.1371/journal.pone.0024026CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cryer MC, Whittle GN, Williams R (1987) The impact of bait collection by anglers on marine intertidal invertebrates. Biol Conserv 42:83–93CrossRefGoogle Scholar
  33. Dernie KM, Kaiser MJ, Warwick RM (2003) Recovery rates of benthic communities following physical disturbance. J Appl Ecol 72:1043–1056CrossRefGoogle Scholar
  34. Deronzier P, Terra S (2006) Etude sur la valorisation des aménités du Loir. Rapport à la Direction des Etudes Economiques et de l’Evaluation Environnementale—Ministère de l’Ecologie, de l’Energie, du Développement durable et de l’Aménagement du territoire, 84 pGoogle Scholar
  35. Deyak TA, Smith VK (1978) Congestion and participation in outdoor recreation: a household function production approach. J Environ Econ Manag 5:63–80CrossRefGoogle Scholar
  36. Dogan AE, Dağlı T, Özcan K, Bakır ZE, Önen M, Katağan T (2008) Commercially important invertebrates inhabiting the Turkish seas. Turk J Aquat Life 3–5(5–8):36–44Google Scholar
  37. Elliott KH, Bull RD, Gaston AJ, Davoren GK (2009) Underwater and above-water search patterns of an Arctic seabird: reduced searching at small spatiotemporal scales. Behav Ecol Sociobiol 63:1773–1785CrossRefGoogle Scholar
  38. Englin J, Cameron TA (1996) Augmenting travel cost models with contingent behavior data. Environ Resour Econ 7:133–147CrossRefGoogle Scholar
  39. Falcão M, Gaspar MB, Caetano M, Santos MN, Vale C (2003) Short-term environmental impact of clam dredging in coastal waters (south of Portugal): chemical disturbance and subsequent recovery of seabed. Mar Environ Res 56:649–664PubMedCrossRefGoogle Scholar
  40. Falcão M, Caetano M, Serpa D, Gaspar M, Vale C (2006) Effects of infauna harvesting on tidal flats of a coastal lagoon (ria Formosa, Portugal): implications on phosphorus dynamics. Mar Environ Res 6:136–148CrossRefGoogle Scholar
  41. Farag EA, Dekinesh SI, El-Odessy HM (1999) Taxonomical studies on edible bivalve molluscs inhabiting the coastal zones of Alexandria, Egypt. Pak J Biol Sci 2:1341–1349CrossRefGoogle Scholar
  42. Fluharty D (2000) Habitat protection, ecological issues, and implementation of the sustainable fisheries act. Ecol Appl 10:325–337CrossRefGoogle Scholar
  43. Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  44. Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770PubMedCrossRefGoogle Scholar
  45. Garrod G, Willis KG (1999) Economic valuation of the environment. Edward Elgar, CheltenhamGoogle Scholar
  46. Griffiths J, Dethier M, Newsom A, Byers J, Meyer J, Oyarzun F, Lenihan H (2006) Invertebrate community responses to recreational clam digging. Mar Biol 149:1489–1497CrossRefGoogle Scholar
  47. Grogger JT, Carson RT (1991) Models for truncated counts. J Appl Econ 6:225–238CrossRefGoogle Scholar
  48. Gürlük S, Rehber E (2008) A travel cost study to estimate recreational value for a bird refuge at Lak Manyas, Turkey. J Environ Manag 88:1350–1360CrossRefGoogle Scholar
  49. Hamilton R, Walter R (1999) Indigenous ecological knowledge and its role in fisheries research design: a case study from Roviana lagoon, Western Province, Solomon Islands. SPC Trad Mar Resour Manag Knowl Inform Bull 11:13–25Google Scholar
  50. Hanemann WM (1994) Valuing the environment through contingent valuation. J Econ Perspect 8:19–43CrossRefGoogle Scholar
  51. Hanley N, Shogren J, White B (1997) Environmental economics in theory and practice. Oxford University Press, 764 pGoogle Scholar
  52. Hardin G (1968) The tragedy of the commons. Science 162:1243–1248PubMedCrossRefGoogle Scholar
  53. Harvard MSC, Tindal TE (1994) The impacts of bait digging on the polychaete fauna of the swale estuary, Kent, UK. Polychaete Res 16:32–36Google Scholar
  54. Hausman JA, Leonard GK, McFadden D (1995) A utility-consistent, combined discrete choice and count data model: assessing recreational use losses due to natural resources damage. J Public Econ 56:1–30CrossRefGoogle Scholar
  55. Hicks RL (2002) Stated preference methods for environmental management: recreational summer flounder angling in the Northeastern United States. Final report prepared for the US National Marine Fisheries Service. Virginia Institute of Marine Science. 73 p. http://web.vims.edu/GreyLit/VIMS/Hicks2002.pdf
  56. Huettmann F, Czech B (2006) The steady-state economy for global shorebird and habitat conservation. Endanger Species Res 2:89–92CrossRefGoogle Scholar
  57. Huth WL, Morgan OA (2011) Measuring the willingness to pay for cave diving. Mar Resour Econ 26:151–166CrossRefGoogle Scholar
  58. Jackson MJ, James R (1979) The influence of bait digging on cockle, Cerastoderma edule, populations in North Norfolk. J Appl Ecol 16:671–679CrossRefGoogle Scholar
  59. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LV, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefGoogle Scholar
  60. Jakus P, Shaw WD (1997) Congestion at recreation areas: empirical evidence on perceptions, mitigating behaviour et management preferences. J Environ Manag 50:389–401CrossRefGoogle Scholar
  61. Jerardino A, Marean CW (2010) Shellfish gathering, marine paleoecology and modern human behavior: perspectives from cave PP13B, pinnacle point, South Africa. J Hum Evol 59:412–424PubMedCrossRefPubMedCentralGoogle Scholar
  62. Johnston RJ, Ranson MH, Besedin EY, Helm EC (2006) What determines willingness to pay per fish? A meta-analysis of recreational fishing values. Mar Resour Econ 21:1–32CrossRefGoogle Scholar
  63. Kaiser MJ, Broad G, Hall SJ (2001) Disturbance of intertidal soft-sediment benthic communities by cockle hand raking. J Sea Res 45:9–130CrossRefGoogle Scholar
  64. Katsanevakis S, Lefkaditou E, Galinou-Mitsoudi S, Koutsoubas D, Zenetos A (2008) Molluscan species of minor commercial interest in Hellenic seas: distribution, exploitation and conservation status. Mediterr Mar Sci 9:17–32CrossRefGoogle Scholar
  65. Katsanevakis S, Poursanidis D, Issaris Y, Panou A, Petza D, Vassilopoulou V, Chaldaiou I, Sini M (2011) “Protected” marine shelled molluscs: thriving in Greek seafood restaurants. Mediterr Mar Sci 12:429–438CrossRefGoogle Scholar
  66. Koutsoubas D, Galinou-Mitsoudi S, Katsanevakis S, Leontarakis P, Metaxatos A, Zenetos A (2007) Bivalve and gastropod molluscs of commercial interest for human consumption in the Hellenic seas. In: Papakostantinou C, Tserpes G, Zenetos A (eds) State of the Hellenic Fisheries, 2007. HCMR, Athens, pp 23–43Google Scholar
  67. Layman RC, Boyce JR, Criddle KR (1996) Economic value of Chinook Salmon sport fishery of the Gulkana river, Alaska, under current and alternative management plans. Land Econ 72:113–128CrossRefGoogle Scholar
  68. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  69. Leplat M (2012) La congestion: une variable clé dans les modèles de choix de sites récréatifs. Économie et Prévision 200–201:185–204CrossRefGoogle Scholar
  70. Logan JM (2005) Effects of clam digging on benthic macroinvertebrate community structure in a Maine mudflat. Northeast Nat 12:315–324CrossRefGoogle Scholar
  71. Lotze HK (2007) Rise and fall of fishing and marine resource use in the Wadden Sea, southern North Sea. Fish Res 87:208–218CrossRefGoogle Scholar
  72. Marean CW (2010) Pinnacle point cave 13B (western Cape Province, South Africa) in context: the cape floral kingdom, shellfish, and modern human origins. J Hum Evol 59:425–443PubMedCrossRefGoogle Scholar
  73. Masero JA, Castro M, Estrella SM, Perez-Hurtado A (2008) Evaluating impacts of shellfish and baitworm digging on bird populations: short-term negative effects on the availability of the mudsnail Hydrobia ulvae to shorebirds. Biodivers Conserv 17:691–701CrossRefGoogle Scholar
  74. McConnell KE, Strand I (1981) Measuring the cost of time in recreation demand analysis: an application to sportfishing. Am J Agric Econ 63:153–156CrossRefGoogle Scholar
  75. McLusky DS, Anderson FE, Wolfe-Murphy S (1983) Distribution and population recovery of Arenicola marina and other benthic fauna after bait digging. Mar Ecol Prog Ser 11:173–179CrossRefGoogle Scholar
  76. Miller RJ, Smith SJ (2012) Nova Scotia’s bloodworm harvest: assessment, regulation and governance. Fish Res 113:84–93CrossRefGoogle Scholar
  77. Munro M (2017) What’s killing the world’s shorebirds? Nature 541:16–20PubMedCrossRefGoogle Scholar
  78. Nash CE (2011) The history of aquaculture. Wiley-Blackwell, Ames, 227 pCrossRefGoogle Scholar
  79. Navedo JG, Masero JA (2008) Effects of traditional clam harvesting on the foraging ecology of migrating curlews (Numenius arquata). J Exp Mar Biol Ecol 355:59–65CrossRefGoogle Scholar
  80. Norkko J, Shumway SE (2011) Bivalves as bioturbators and bioirrigators. In: Shumway SE (ed) Shellfish aquaculture and the environment. Wiley-Blackwell, Singapore, pp 297–317CrossRefGoogle Scholar
  81. Nunes PALD, van den Bergh CJM (2004) Can people value protection against invasive marine species? Evidence from a joint TC-CV survey in the Netherlands. Environ Resour Econ 28:517–532CrossRefGoogle Scholar
  82. Olive PJW (1993) Management of the exploitation of the lugworm Arenicola marina and the ragworm Nereis virens (Polychaeta) in conservation areas. Aquat Conserv Mar Freshw Syst 3:1–24CrossRefGoogle Scholar
  83. Olive PJ (1999) Polychaete aquaculture and polychaete science: a mutual synergism. Hydrobiologia 402:175–183CrossRefGoogle Scholar
  84. Pearce D, Atkinson G, Mourato S (2006) Analyse coûts-bénéfices et environnement: développements récents. Editions OCDE, Paris, 355 pGoogle Scholar
  85. Piersma T, Lindström A (2004) Migrating shorebirds as integrative sentinels of global environmental change. Ibis 146(Suppl 1):61–69CrossRefGoogle Scholar
  86. Poutiers JM (1987) Bivalves. In: Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire. vol I. Végétaux et Invertébrés. FAO, Rome, pp 370–512Google Scholar
  87. Prummel W, Heinrich D (2005) Archaeological evidence of former occurrence and changes in fishes, amphibians, birds, mammals and molluscs in the Wadden Sea area. Helgoland J Mar Res 59:55–70CrossRefGoogle Scholar
  88. Rossi F, Forster RM, Montserrat F, Ponti M, Terlizzi A, Ysebaert T, Middelburg JJ (2007) Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves. Mar Biol 151:2077–2090PubMedPubMedCentralCrossRefGoogle Scholar
  89. Skilleter GA, Zharikov Y, Cameron B, McPhee DP (2005) Effects of harvesting callianassid (ghost) shrimps on subtropical benthic communities. J Exp Mar Biol Ecol 320:133–158CrossRefGoogle Scholar
  90. Sypitkowski E, Ambose WG Jr, Bohlen C, Warren J (2009) Catch statistics in the bloodworm fishery in Maine. Fish Res 96:303–307CrossRefGoogle Scholar
  91. Terhorst CP, Dudgeon SR (2009) Beyond the patch: disturbance affects species abundances in the surrounding community. J Exp Mar Biol Ecol 370:120–126PubMedPubMedCentralCrossRefGoogle Scholar
  92. Toupoint N, Barbier P, Tremblay R, Archambault P, McKindsey CW, Winkler G, Meziane T, Olivier F (2016) Influence of intertidal recreational fisheries and ‘bouchot’ mussel culture on bivalve recruitment. Mar Environ Res 117:1–12PubMedCrossRefGoogle Scholar
  93. Van Alstyne KL, Flanagan JC, Gifford SA (2011) Recreational clam harvesting affects sediment nutrient remineralization and the growth of the green macroalga Ulva lactuca. J Exp Mar Biol Ecol 401:57–62CrossRefGoogle Scholar
  94. van den Heiligenberg T (1987) Effects of mechanical and manual harvesting of lugworms Arenicola marina L. on the benthic fauna of tidal flats in the Dutch Wadden Sea. Biol Conserv 39:165–177CrossRefGoogle Scholar
  95. Voultsiadou E (2010) Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantium. J Ethnopharmacol 130:237–247PubMedCrossRefGoogle Scholar
  96. Voultsiadou E, Koutsoubas D, Achparaki M (2010) Bivalve mollusc exploitation in Mediterranean coastal communities: an historical approach. J Biol Res Thessaloniki 13:35–45Google Scholar
  97. Watson GJ, Farrell P, Stanton S, Skidmore LC (2007) The effects of bait collection on Nereis virens populations and macrofaunal communities in the Solent, UK. J Mar Biol Assoc UK 87:703–716CrossRefGoogle Scholar
  98. Watson GJ, Murray JM, Schaefer M, Bonner A (2015) Successful local marine conservation requires appropriate educational methods and adequate enforcement. Mar Policy 52:59–67CrossRefGoogle Scholar
  99. Watson GJ, Murray JM, Schaefer M, Bonner A (2017a) Bait worms: a valuable and important fishery with implications for fisheries and conservation management. Fish Fish 18:374–388CrossRefGoogle Scholar
  100. Watson GJ, Murray JM, Schaefer M, Bonner A, Gillingham M (2017b) Assessing the impacts of bait collection on inter-tidal sediment and the associated macrofaunal and bird communities: the importance of appropriate spatial scales. Mar Environ Res 130:122–133PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wendelboe K, Egelund JT, Flindt MR, Valdemarsen T (2013) Impact of lugworms (Arenicola marina) on mobilization and transport of fine particles and organic matter in marine sediments. J Sea Res 76:31–38CrossRefGoogle Scholar
  102. Whomersley P, Huxham M, Bolam S, Schratzberger AJ, Ridland D (2010) Response of intertidal macrofauna to multiple disturbance types and intensities—an experimental approach. Mar Environ Res 69:297–308PubMedCrossRefPubMedCentralGoogle Scholar
  103. Wiber MG, Young S, Wilson L (2012) Impact of aquaculture on commercial fisheries: fishermen’s local ecological knowledge. Hum Ecol 40:29–40CrossRefGoogle Scholar
  104. Worm B, Myers RA (2003) Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84:162–173CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Biologie Marine, MMS, Faculté des SciencesUniversité de NantesNantesFrance

Personalised recommendations