A Circle Packing Problem and Its Connection to Malfatti’s Problem

  • D. Munkhdalai
  • R. Enkhbat
Part of the Springer Optimization and Its Applications book series (SOIA, volume 141)


We have analytically solved the problem how to split a given triangle’s two sides by a line such that a total area of inscribed two circles embedded in each side of the line reaches the maximum. We also show that Malfatti’s problem for n = 2 is a particular case of our problem.


Geometry Circle packing Malfatti’s problem 


  1. 1.
    Andreescu, T., Mushkarov, O., Stoyanov, L.: Geometric Problems on Maxima and Minima. Malfatti’s Problems 2.3, 80 pp. Birkhäuser, Boston (2005)Google Scholar
  2. 2.
    Enkhbat, R., Barsbold, B.: Optimal inscribing of two balls into polyhedral set. In: Optimization, Simulation, and Control. Springer Optimization and Its Applications, vol. 76, pp. 35–47. Springer, Berlin (2013)Google Scholar
  3. 3.
    Enkhbat, R., Bayarbaatar, A.: On the maximum and minimum radius problems over a polyhedral set. Mongolian Math. J. 11, 23–33 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Enkhbat, R., Buyankhuu, L.: T2-2 find a point M on the side BC, for which sum of the areas of the inscribed circles of ABD and ACD reaches maximum value. Mongolian Mathematical Olympiad Series – No. 36 (2012)Google Scholar
  5. 5.
    Marco, A., Bezdek, A., Boroński, J.P.: The problem of Malfatti: two centuries of debate. Math. Intell. 33(1), 72–76 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zalgaller, V.A., Los’, G.A.: The solution of Malfatti’s problem. J. Math. Sci. 72(4), 3163–3177 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Enkhbat, R., Barkova, M., Strekalovsky, A.S.: Solving Malfatti’s high dimensional problem by global optimization. Numer. Algebra Control Optim. 6(2), 153–160 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Enkhbat, R., Barkova, M.: Global search method for solving Malfatti’s four-circle problem. J. Irkutsk State Univ. (Ser. Math.) 15, 38–49 (2016).
  9. 9.
    Enkhbat, R.: Global optimization approach to Malfatti’s problem. J. Global Optim. 65, 33–39 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • D. Munkhdalai
    • 1
  • R. Enkhbat
    • 1
  1. 1.National University of MongoliaUlaanbaatarMongolia

Personalised recommendations