Recording Identified Neurons in Awake and Anesthetized Rodents

  • John J. TukkerEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


A deeper understanding of the brain is likely to require detailed, quantitative descriptions at several levels, ranging from the molecular to the behavioral, as well as an understanding of the relations among these levels. Taking the single neuron as the basic building block, I will here outline recent progress in linking different levels of description, including anatomical and molecular properties on the one hand (“structure”) and electrochemical activity on the other (“function”), whereby these properties are always considered to be interdependent on the activity of other neurons in the network and the behavior of the organism as a whole.

One key methodological advance has been the ability to both record activity from single neurons and observe their structural properties, in intact animals during specific brain states and/or behaviors. In this chapter, I will describe such methods in some detail, and illustrate with some key examples how observations on single-cell physiological and anatomical properties (membrane potential fluctuations and associated currents, morphology, molecular expression profile), in combination with network and behavioral properties (specifically focusing on navigation and the representation of space), can provide unique insights into hippocampal function.


Place cells Grid cells Head-direction cells Interneurons Oscillations Juxtacellular Patch-clamp Head-fixed Anesthetized Freely moving 



The author wishes to thank Andrea Burgalossi, Constance Holman, Nikolaus Maier, and Peter Somogyi for helpful comments on earlier versions of this chapter and Linda Hahn-Tukker for help with the figures.


  1. Acharya L, Aghajan ZM, Vuong C, Moore JJ, Mehta MR (2016) Causal influence of visual cues on hippocampal directional selectivity. Cell 164:197–207PubMedCrossRefGoogle Scholar
  2. Aghajan ZM, Acharya L, Moore JJ, Cushman JD, Vuong C, Mehta MR (2015) Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat Neurosci 18:121–128PubMedCrossRefGoogle Scholar
  3. Apostolides PF, Milstein AD, Grienberger C, Bittner KC, Magee JC (2016) Axonal filtering allows reliable output during dendritic plateau-driven complex spiking in CA1 neurons. Neuron 89:770–783PubMedCrossRefGoogle Scholar
  4. Armañanzas R, Ascoli GA (2015) Towards the automatic classification of neurons. Trends Neurosci 38:307–318PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aronov D, Tank DW (2014) Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84:442–456PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arszovszki A, Borhegyi Z, Klausberger T (2014) Three axonal projection routes of individual pyramidal cells in the ventral CA1 hippocampus. Front Neuroanat 8:53PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ascoli GA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ascoli GA (2015) Sharing neuron data: carrots, sticks, and digital records. PLoS Biol 13:e1002275PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251PubMedCrossRefGoogle Scholar
  10. Battaglia D, Karagiannis A, Gallopin T, Gutch HW, Cauli B (2013) Beyond the frontiers of neuronal types. Front Neural Circuits 7:13PubMedPubMedCentralCrossRefGoogle Scholar
  11. Begemann I, Galic M (2016) Correlative light electron microscopy: connecting synaptic structure and function. Front Synap Neurosci 28Google Scholar
  12. Berning M, Boergens KM, Helmstaedter M (2015) SegEM: efficient image analysis for high-resolution connectomics. Neuron 87:1193–1206PubMedCrossRefGoogle Scholar
  13. Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23:751–785PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18:1133–1142PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boccara CN, Kjonigsen LJ, Hammer IM, Bjaalie JG, Leergaard TB, Witter MP (2015) A three-plane architectonic atlas of the rat hippocampal region. Hippocampus 25:838–857PubMedCrossRefGoogle Scholar
  16. Bock DD, Lee W-CA, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182PubMedPubMedCentralCrossRefGoogle Scholar
  17. Böhm C, Peng Y, Maier N, Winterer J, Poulet JFA, Geiger JRP, Schmitz D (2015) Functional diversity of subicular principal cells during hippocampal ripples. J Neurosci 35:13608–13618PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI, Moser M-B (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci 16:309–317PubMedCrossRefGoogle Scholar
  19. Bota M, Dong H-W, Swanson LW (2003) From gene networks to brain networks. Nat Neurosci 6:795–799PubMedCrossRefGoogle Scholar
  20. Bota M, Swanson LW (2007) The neuron classification problem. Brain Res Rev 56:79–88PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704–710PubMedCrossRefGoogle Scholar
  23. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188PubMedCrossRefGoogle Scholar
  24. Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–1627PubMedCrossRefGoogle Scholar
  25. Budd JML, Cuntz H, Eglen SJ, Krieger P (2015) Editorial: quantitative analysis of neuroanatomy. Front Neuroanat 9:143PubMedPubMedCentralCrossRefGoogle Scholar
  26. Buetfering C, Allen K, Monyer H (2014) Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat Neurosci 17:710–718PubMedCrossRefGoogle Scholar
  27. Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828PubMedPubMedCentralCrossRefGoogle Scholar
  28. Burgalossi A, Herfst L, von Heimendahl M, Förste H, Haskic K, Schmidt M, Brecht M (2011) Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron 70:773–786PubMedCrossRefGoogle Scholar
  29. Buzsaki G (2006) Rhythms of the brain, 1st edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  30. Buzsáki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–1188PubMedPubMedCentralCrossRefGoogle Scholar
  31. Buzsáki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171PubMedCrossRefGoogle Scholar
  32. Buzsáki G, Czopf J, Kondákor I, Kellényi L (1986) Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. Brain Res 365:125–137PubMedCrossRefGoogle Scholar
  33. Buzsáki G, Stark E, Berényi A, Khodagholy D, Kipke DR, Yoon E, Wise KD (2015) Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86:92–105PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cacucci F, Lever C, Wills TJ, Burgess N, O’Keefe J (2004) Theta-modulated place-by-direction cells in the hippocampal formation in the rat. J Neurosci 24:8265–8277PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, Reimer J, Shen S, Bethge M, Tolias KF, Sandberg R, Tolias AS (2016) Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat Biotechnol 34:199–203PubMedCrossRefGoogle Scholar
  36. Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:381243PubMedPubMedCentralCrossRefGoogle Scholar
  37. Carr MF, Karlsson MP, Frank LM (2012) Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 75:700–713PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chen G, King JA, Burgess N, O’Keefe J (2013) How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci U S A 110:378–383PubMedCrossRefGoogle Scholar
  39. Chorev E, Brecht M (2012) In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons. J Neurophysiol 108:1584–1593PubMedCrossRefGoogle Scholar
  40. Chung K, Deisseroth K (2013) CLARITY for mapping the nervous system. Nat Methods 10:508–513PubMedCrossRefGoogle Scholar
  41. Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T (2015) Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348:560–563PubMedCrossRefGoogle Scholar
  42. Clement EA, Richard A, Thwaites M, Ailon J, Peters S, Dickson CT (2008) Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS ONE 3:e2004PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cobb SR, Halasy K, Vida I, Nyiri G, Tamas G, Buhl EH, Somogyi P (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79:629–648CrossRefGoogle Scholar
  44. Colgin LL (2015) Do slow and fast gamma rhythms correspond to distinct functional states in the hippocampal network? Brain Res 1621:309–315PubMedPubMedCentralCrossRefGoogle Scholar
  45. Couey JJ, Witoelar A, Zhang S-J, Zheng K, Ye J, Dunn B, Czajkowski R, Moser M-B, Moser EI, Roudi Y, Witter MP (2013) Recurrent inhibitory circuitry as a mechanism for grid formation. Nat Neurosci 16:318–324CrossRefGoogle Scholar
  46. Crochet S, Chauvette S, Boucetta S, Timofeev I (2005) Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 21:1030–1044PubMedCrossRefGoogle Scholar
  47. Csicsvari J, Jamieson B, Wise KD, Buzsáki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322PubMedCrossRefGoogle Scholar
  48. Cushman JD, Aharoni DB, Willers B, Ravassard P, Kees A, Vuong C, Popeney B, Arisaka K, Mehta MR (2013) Multisensory control of multimodal behavior: do the legs know what the tongue is doing? PLoS ONE 8:e80465PubMedPubMedCentralCrossRefGoogle Scholar
  49. Danielson NB, Zaremba JD, Kaifosh P, Bowler J, Ladow M, Losonczy A (2016) Sublayer-specific coding dynamics during spatial navigation and learning in hippocampal area CA1. Neuron 91:652–665PubMedPubMedCentralCrossRefGoogle Scholar
  50. DeFelipe J et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14:202–216PubMedPubMedCentralCrossRefGoogle Scholar
  51. Desai NS, Siegel JJ, Taylor W, Chitwood RA, Johnston D (2015) MATLAB-based automated patch-clamp system for awake behaving mice. J Neurophysiol 114:1331–1345PubMedPubMedCentralCrossRefGoogle Scholar
  52. Diamantaki M, Frey M, Berens P, Preston-Ferrer P, Burgalossi A (2016a) Sparse activity of identified dentate granule cells during spatial exploration. Elife 5Google Scholar
  53. Diamantaki M, Frey M, Preston-Ferrer P, Burgalossi A (2016b) Priming spatial activity by single-cell stimulation in the dentate gyrus of freely moving rats. Curr Biol 26:536–541PubMedCrossRefGoogle Scholar
  54. Dickson CT, Trepel C, Bland BH (1994) Extrinsic modulation of theta field activity in the entorhinal cortex of the anesthetized rat. Hippocampus 4:37–51PubMedCrossRefGoogle Scholar
  55. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440PubMedPubMedCentralCrossRefGoogle Scholar
  57. Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dynamics of grid cells. Nature 495:199–204PubMedPubMedCentralCrossRefGoogle Scholar
  58. Doron G, von Heimendahl M, Schlattmann P, Houweling AR, Brecht M (2014) Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81:653–663PubMedCrossRefGoogle Scholar
  59. Ego-Stengel V, Wilson MA (2007) Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus 17:161–174CrossRefGoogle Scholar
  60. English DF, Peyrache A, Stark E, Roux L, Vallentin D, Long MA, Buzsáki G (2014) Excitation and inhibition compete to control spiking during hippocampal ripples: intracellular study in behaving mice. J Neurosci 34:16509–16517PubMedPubMedCentralCrossRefGoogle Scholar
  61. Epsztein J, Lee AK, Chorev E, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327:474–477PubMedCrossRefGoogle Scholar
  62. Epsztein J, Brecht M, Lee AK (2011) Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70:109–120PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fee MS (2000) Active stabilization of electrodes for intracellular recording in awake behaving animals. Neuron 27:461–468PubMedCrossRefGoogle Scholar
  64. Fenno LE et al (2014) Targeting cells with single vectors using multiple-feature boolean logic. Nat Methods 11:763–772PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fenton AA, Kao H-Y, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28:11250–11262PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ferezou I, Bolea S, Petersen CCH (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50:617–629PubMedCrossRefGoogle Scholar
  67. Ferrante M, Tahvildari B, Duque A, Hadzipasic M, Salkoff D, Zagha EW, Hasselmo ME, McCormick DA (2017) Distinct functional groups emerge from the intrinsic properties of molecularly identified Entorhinal interneurons and principal cells. Cereb Cortex 27:3186–3207PubMedGoogle Scholar
  68. Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RPJ, Ko TH, Burns LD, Jung JC, Schnitzer MJ (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5:935–938PubMedPubMedCentralCrossRefGoogle Scholar
  69. Fox SE, Ranck JB (1975) Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Exp Neurol 49:299–313PubMedCrossRefGoogle Scholar
  70. Fuchs EC, Neitz A, Pinna R, Melzer S, Caputi A, Monyer H (2016) Local and distant input controlling excitation in layer ii of the medial entorhinal cortex. Neuron 89:194–208PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thomson A, Somogyi P, Klausberger T (2008) Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57:917–929PubMedPubMedCentralCrossRefGoogle Scholar
  72. Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M, Remy S (2015) Locomotion, Theta oscillations, and the speed-correlated firing of hippocampal neurons are controlled by a medial septal Glutamatergic circuit. NeuronGoogle Scholar
  73. Fuzik J, Zeisel A, Máté Z, Calvigioni D, Yanagawa Y, Szabó G, Linnarsson S, Harkany T (2016) Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34:175–183CrossRefGoogle Scholar
  74. Gao P, Ploog BO, Zeigler HP (2003) Whisking as a “voluntary” response: operant control of whisking parameters and effects of whisker denervation. Somatosens Mot Res 20:179–189PubMedCrossRefGoogle Scholar
  75. Garcia S, Guarino D, Jaillet F, Jennings T, Pröpper R, Rautenberg PL, Rodgers CC, Sobolev A, Wachtler T, Yger P, Davison AP (2014) Neo: an object model for handling electrophysiology data in multiple formats. Front Neuroinform 8:10PubMedPubMedCentralCrossRefGoogle Scholar
  76. Giocomo LM, Stensola T, Bonnevie T, Van Cauter T, Moser M-B, Moser EI (2014) Topography of head direction cells in medial entorhinal cortex. Curr Biol 24:252–262PubMedCrossRefGoogle Scholar
  77. Graves AR, Moore SJ, Bloss EB, Mensh BD, Kath WL, Spruston N (2012) Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. Neuron 76:776–789PubMedPubMedCentralCrossRefGoogle Scholar
  78. Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat Neurosci 11:749–751PubMedCrossRefGoogle Scholar
  79. Grienberger C, Chen X, Konnerth A (2014) NMDA receptor-dependent multidendrite Ca(2+) spikes required for hippocampal burst firing in vivo. Neuron 81:1274–1281PubMedCrossRefGoogle Scholar
  80. Grosenick L, Marshel JH, Deisseroth K (2015) Closed-loop and activity-guided optogenetic control. Neuron 86:106–139PubMedPubMedCentralCrossRefGoogle Scholar
  81. Guo ZV, Hires SA, Li N, O’Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D, Peron S, Xu N, Cox J, Svoboda K (2014) Procedures for behavioral experiments in head-fixed mice. PLoS ONE 9:e88678PubMedPubMedCentralCrossRefGoogle Scholar
  82. Guzowski JF, Timlin JA, Roysam B, McNaughton BL, Worley PF, Barnes CA (2005) Mapping behaviorally relevant neural circuits with immediate-early gene expression. Curr Opin Neurobiol 15:599–606PubMedCrossRefGoogle Scholar
  83. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRefGoogle Scholar
  84. Hamilton DJ, Wheeler DW, White CM, Rees CL, Komendantov AO, Bergamino M, Ascoli GA (2016) Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties. Brain InformGoogle Scholar
  85. Hara K, Harris RA (2002) The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth Analg 94:313–318PubMedGoogle Scholar
  86. Hardcastle K, Maheswaranathan N, Ganguli S, Giocomo LM (2017) A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron 94:375–387.e7PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hartley T, Lever C, Burgess N, O’Keefe J (2014) Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc Lond B Biol Sci 369:20120510PubMedPubMedCentralCrossRefGoogle Scholar
  88. Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946PubMedPubMedCentralCrossRefGoogle Scholar
  89. Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hasegawa T, Fujimoto H, Tashiro K, Nonomura M, Tsuchiya A, Watanabe D (2015) A wireless neural recording system with a precision motorized microdrive for freely behaving animals. Sci Rep 5:7853PubMedPubMedCentralCrossRefGoogle Scholar
  91. Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31:903–912PubMedCrossRefGoogle Scholar
  92. Helmchen F, Denk W, Kerr JND (2013) Miniaturization of two-photon microscopy for imaging in freely moving animals. Cold Spring Harb Protoc 2013:904–913PubMedCrossRefGoogle Scholar
  93. Helmstaedter M (2015) The mutual inspirations of machine learning and neuroscience. Neuron 86:25–28PubMedCrossRefGoogle Scholar
  94. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174PubMedCrossRefGoogle Scholar
  95. Hemmings HC, Yan W, Westphalen RI, Ryan TA (2005) The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol Pharmacol 67:1591–1599PubMedCrossRefGoogle Scholar
  96. Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsáki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390–400PubMedCrossRefGoogle Scholar
  97. Herfst L, Burgalossi A, Haskic K, Tukker JJ, Schmidt M, Brecht M (2012) Friction-based stabilization of juxtacellular recordings in freely moving rats. J Neurophysiol 108:697–707PubMedPubMedCentralCrossRefGoogle Scholar
  98. Heys JG, Rangarajan KV, Dombeck DA (2014) The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron 84:1079–1090PubMedPubMedCentralCrossRefGoogle Scholar
  99. Hölscher C, Schnee A, Dahmen H, Setia L, Mallot HA (2005) Rats are able to navigate in virtual environments. J Exp Biol 208:561–569PubMedCrossRefGoogle Scholar
  100. Houweling AR, Brecht M (2008) Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451:65–68PubMedCrossRefGoogle Scholar
  101. Hulse BK, Moreaux LC, Lubenov EV, Siapas AG (2016) Membrane potential dynamics of CA1 pyramidal neurons during hippocampal ripples in awake mice. Neuron 89:800–813PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ishihara Y, Fukuda T (2016) Immunohistochemical investigation of the internal structure of the mouse subiculum. Neuroscience 337:242–266PubMedCrossRefGoogle Scholar
  103. Jacob P-Y, Poucet B, Liberge M, Save E, Sargolini F (2014) Vestibular control of entorhinal cortex activity in spatial navigation. Front Integr Neurosci 8:38PubMedPubMedCentralCrossRefGoogle Scholar
  104. Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ (2013) The organization of two new cortical interneuronal circuits. Nat Neurosci 16:210–218PubMedPubMedCentralCrossRefGoogle Scholar
  105. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS (2015) Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350:aac9462PubMedPubMedCentralCrossRefGoogle Scholar
  106. Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JDB, Fuentealba P, Bushong EA, Henze D, Buzsáki G, Somogyi P (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27:8790–8804PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jonas E, Kording K (2015) Automatic discovery of cell types and microcircuitry from neural connectomics. Elife 4:e04250PubMedPubMedCentralCrossRefGoogle Scholar
  108. Jouhanneau J-S, Kremkow J, Dorrn AL, Poulet JFA (2015) In vivo monosynaptic excitatory transmission between layer 2 cortical pyramidal neurons. Cell Rep 13:2098–2106PubMedPubMedCentralCrossRefGoogle Scholar
  109. Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kale RP, Kouzani AZ, Walder K, Berk M, Tye SJ (2015) Evolution of optogenetic microdevices. Neurophotonics 2:31206CrossRefGoogle Scholar
  111. Kamondi A, Acsády L, Buzsáki G (1998) Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J Neurosci 18:3919–3928PubMedCrossRefGoogle Scholar
  112. Kasthuri N et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661PubMedCrossRefGoogle Scholar
  113. Katona L, Lapray D, Viney TJ, Oulhaj A, Borhegyi Z, Micklem BR, Klausberger T, Somogyi P (2014) Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82:872–886PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kautzky M, Thurley K (2016) Estimation of self-motion duration and distance in rodents. R Soc Open Sci 3:160118PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505:318–326PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC (2010) Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67:858–871PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kim EJ, Jacobs MW, Ito-Cole T, Callaway EM (2016) Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep 15(4):692–699PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M, Turaga SC, Purcaro M, Balkam M, Robinson A, Behabadi BF, Campos M, Denk W, Seung HS, EyeWirers (2014) Space-time wiring specificity supports direction selectivity in the retina. Nature 509:331–336PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kislin M, Mugantseva E, Molotkov D, Kulesskaya N, Khirug S, Kirilkin I, Pryazhnikov E, Kolikova J, Toptunov D, Yuryev M, Giniatullin R, Voikar V, Rivera C, Rauvala H, Khiroug L (2014) Flat-floored air-lifted platform: a new method for combining behavior with microscopy or electrophysiology on awake freely moving rodents. J Vis Exp:e51869Google Scholar
  120. Kitai ST, Kocsis JD, Preston RJ, Sugimori M (1976) Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Res 109:601–606PubMedCrossRefGoogle Scholar
  121. Kitamura K, Judkewitz B, Kano M, Denk W, Häusser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67PubMedCrossRefGoogle Scholar
  122. Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S (2014) Island cells control temporal association memory. Science 343:896–901PubMedPubMedCentralCrossRefGoogle Scholar
  123. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57PubMedPubMedCentralCrossRefGoogle Scholar
  124. Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsáki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMedPubMedCentralCrossRefGoogle Scholar
  125. Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7:41–47PubMedPubMedCentralCrossRefGoogle Scholar
  126. Klausberger T, Marton LF, O’Neill J, Huck JHJ, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782–9793PubMedPubMedCentralCrossRefGoogle Scholar
  127. Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012) Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat Methods 9:585–587PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kohtala S, Theilmann W, Suomi T, Wigren H-K, Porkka-Heiskanen T, Elo LL, Rokka A, Rantamäki T (2016) Brief Isoflurane anesthesia produces prominent Phosphoproteomic changes in the adult mouse Hippocampus. ACS Chem NeurosciGoogle Scholar
  129. Kropff E, Carmichael JE, Moser M-B, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523:419–424PubMedCrossRefGoogle Scholar
  130. Krupic J, Burgess N, O’Keefe J (2012) Neural representations of location composed of spatially periodic bands. Science 337:853–857PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kubie JL, Muller RU, Bostock E (1990) Spatial firing properties of hippocampal theta cells. J Neurosci 10:1110–1123PubMedCrossRefGoogle Scholar
  132. Lambolez B, Audinat E, Bochet P, Crépel F, Rossier J (1992) AMPA receptor subunits expressed by single purkinje cells. Neuron 9:247–258PubMedCrossRefGoogle Scholar
  133. Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361–374PubMedCrossRefGoogle Scholar
  134. Langer D, Helmchen F (2012) Post hoc immunostaining of GABAergic neuronal subtypes following in vivo two-photon calcium imaging in mouse neocortex. Pflugers Arch 463:339–354PubMedCrossRefGoogle Scholar
  135. Lapray D, Lasztoczi B, Lagler M, Viney TJ, Katona L, Valenti O, Hartwich K, Borhegyi Z, Somogyi P, Klausberger T (2012) Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci 15:1265–1271PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lasztóczi B, Klausberger T (2014) Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 81:1126–1139PubMedCrossRefGoogle Scholar
  137. Lasztóczi B, Klausberger T (2016) Hippocampal place cells couple to three different gamma oscillations during place field traversal. Neuron 91:34–40PubMedCrossRefGoogle Scholar
  138. Lasztóczi B, Tukker JJ, Somogyi P, Klausberger T (2011) Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area. J Neurosci 31:18073–18,093PubMedPubMedCentralCrossRefGoogle Scholar
  139. Lee I, Rao G, Knierim JJ (2004) A double dissociation between hippocampal subfields: differential time course of CA3 and CA1 place cells for processing changed environments. Neuron 42:803–815PubMedCrossRefGoogle Scholar
  140. Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407CrossRefGoogle Scholar
  141. Lee AK, Epsztein J, Brecht M (2009) Head-anchored whole-cell recordings in freely moving rats. Nat Protoc 4:385–392CrossRefGoogle Scholar
  142. Lee D, Lin B-J, Lee AK (2012) Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337:849–853PubMedCrossRefGoogle Scholar
  143. Lee D, Shtengel G, Osborne JE, Lee AK (2014a) Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization. Nat Protoc 9:2784–2795PubMedCrossRefGoogle Scholar
  144. Lee S-H, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I (2014b) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129–1144PubMedPubMedCentralCrossRefGoogle Scholar
  145. Leitner FC, Melzer S, Lütcke H, Pinna R, Seeburg PH, Helmchen F, Monyer H (2016) Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex. Nat Neurosci 19:935–944PubMedCrossRefGoogle Scholar
  146. Lever C, Burton S, O’Keefe J (2006) Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci 17:111–133PubMedCrossRefGoogle Scholar
  147. Lichtman JW, Pfister H, Shavit N (2014) The big data challenges of connectomics. Nat Neurosci 17:1448–1454PubMedPubMedCentralCrossRefGoogle Scholar
  148. Lima SQ, Hromádka T, Znamenskiy P, Zador AM (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4:e6099PubMedPubMedCentralCrossRefGoogle Scholar
  149. Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19:1142–1153PubMedPubMedCentralCrossRefGoogle Scholar
  150. Lithfous S, Dufour A, Després O (2013) Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res Rev 12:201–213PubMedCrossRefGoogle Scholar
  151. Long MA, Lee AK (2012) Intracellular recording in behaving animals. Curr Opin Neurobiol 22:34–44PubMedCrossRefGoogle Scholar
  152. Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of neuronal sequence generation. Nature 468:394–399PubMedPubMedCentralCrossRefGoogle Scholar
  153. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22:18–23PubMedCrossRefGoogle Scholar
  154. Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F, Sun X-H, Nicoud J-F, Zemelman BV, Sternson SM, Losonczy A (2012) Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15(423–430):S1–S3Google Scholar
  155. Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014) Dendritic inhibition in the hippocampus supports fear learning. Science 343:857–863PubMedPubMedCentralCrossRefGoogle Scholar
  156. Lustig B, Wang Y, Pastalkova E (2016) Oscillatory patterns in hippocampus under light and deep isoflurane anesthesia closely mirror prominent brain states in awake animals. Hippocampus 26:102–109PubMedCrossRefGoogle Scholar
  157. Madisen L et al (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85:942–958PubMedPubMedCentralCrossRefGoogle Scholar
  158. Maier N, Tejero-Cantero A, Dorrn AL, Winterer J, Beed PS, Morris G, Kempter R, Poulet JFA, Leibold C, Schmitz D (2011) Coherent phasic excitation during hippocampal ripples. Neuron 72:137–152PubMedCrossRefGoogle Scholar
  159. Marblestone AH, Daugharthy ER, Kalhor R, Peikon ID, Kebschull JM, Shipman SL, Mishchenko Y, Lee JH, Dalrymple DA, Zamft BM, Kording KP, Boyden ES, Zador AM, Church GM (2014) Conneconomics: the economics of dense, large-scale, high-resolution neural Connectomics. bioRxiv:1214Google Scholar
  160. Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498PubMedCrossRefGoogle Scholar
  161. Margrie TW, Meyer AH, Caputi A, Monyer H, Hasan MT, Schaefer AT, Denk W, Brecht M (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39:911–918PubMedCrossRefGoogle Scholar
  162. Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111–8125CrossRefGoogle Scholar
  163. Maurer AP, Cowen SL, Burke SN, Barnes CA, McNaughton BL (2006) Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J Neurosci 26:13485–13492PubMedCrossRefGoogle Scholar
  164. Melzer S, Michael M, Caputi A, Eliava M, Fuchs EC, Whittington MA, Monyer H (2012) Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335:1506–1510CrossRefGoogle Scholar
  165. Mikula S, Denk W (2015) High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 12:541–546PubMedCrossRefGoogle Scholar
  166. Minderer M, Harvey CD, Donato F, Moser EI (2016) Neuroscience: virtual reality explored. Nature 533:324–325PubMedCrossRefGoogle Scholar
  167. Mizrahi A, Crowley JC, Shtoyerman E, Katz LC (2004) High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci 24:3147–3151PubMedCrossRefGoogle Scholar
  168. Mizuseki K, Diba K, Pastalkova E, Buzsáki G (2011) Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat Neurosci Available at: Accessed 23 Aug 2011
  169. Mizuseki K, Royer S, Diba K, Buzsáki G (2012) Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22:1659–1680PubMedPubMedCentralCrossRefGoogle Scholar
  170. Monaco JD, Rao G, Roth ED, Knierim JJ (2014) Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat Neurosci 17:725–731PubMedPubMedCentralCrossRefGoogle Scholar
  171. Moore JD, Deschênes M, Kurnikova A, Kleinfeld D (2014) Activation and measurement of free whisking in the lightly anesthetized rodent. Nat Protoc 9:1792–1802PubMedPubMedCentralCrossRefGoogle Scholar
  172. Moroni F, Corradetti R, Casamenti F, Moneti G, Pepeu G (1981) The release of endogenous GABA and glutamate from the cerebral cortex in the rat. Naunyn Schmiedebergs Arch Pharmacol 316:235–239PubMedCrossRefGoogle Scholar
  173. Müller C, Remy S (2014) Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus. Front Synaptic Neurosci 6:23PubMedPubMedCentralGoogle Scholar
  174. Müller A, Kukley M, Stausberg P, Beck H, Müller W, Dietrich D (2005) Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. J Neurosci 25:558–565PubMedCrossRefGoogle Scholar
  175. Muñoz W, Tremblay R, Rudy B (2014) Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. Cell Rep 9:2304–2316PubMedPubMedCentralCrossRefGoogle Scholar
  176. Nashaat MA, Oraby H, Sachdev RNS, Winter Y, Larkum ME (2016) Air-Track: a real-world floating environment for active sensing in head-fixed mice. J Neurophysiol 116:1542–1553PubMedPubMedCentralCrossRefGoogle Scholar
  177. Nassar M, Simonnet J, Lofredi R, Cohen I, Savary E, Yanagawa Y, Miles R, Fricker D (2015) Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Front Neural Circuits 9:20PubMedPubMedCentralCrossRefGoogle Scholar
  178. Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9:80PubMedPubMedCentralCrossRefGoogle Scholar
  179. Niedworok CJ, Brown APY, Jorge Cardoso M, Osten P, Ourselin S, Modat M, Margrie TW (2016) aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data. Nat Commun 7:11879PubMedPubMedCentralCrossRefGoogle Scholar
  180. O’Connor DH, Huber D, Svoboda K (2009) Reverse engineering the mouse brain. Nature 461:923–929PubMedCrossRefGoogle Scholar
  181. O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109PubMedCrossRefGoogle Scholar
  182. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175PubMedCrossRefGoogle Scholar
  183. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330PubMedPubMedCentralCrossRefGoogle Scholar
  184. Oberlaender M, Ramirez A, Bruno RM (2012) Sensory experience restructures thalamocortical axons during adulthood. Neuron 74:648–655PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603PubMedCrossRefGoogle Scholar
  186. Okaty BW, Sugino K, Nelson SB (2011) Cell type-specific transcriptomics in the brain. J Neurosci 31:6939–6943PubMedPubMedCentralCrossRefGoogle Scholar
  187. Osten P, Margrie TW (2013) Mapping brain circuitry with a light microscope. Nat Methods 10:515–523PubMedPubMedCentralCrossRefGoogle Scholar
  188. Packer AM, Russell LE, Dalgleish HWP, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146PubMedCrossRefGoogle Scholar
  189. Pagliardini S, Gosgnach S, Dickson CT (2013) Spontaneous sleep-like brain state alternations and breathing characteristics in urethane anesthetized mice. PLoS ONE 8:e70411PubMedPubMedCentralCrossRefGoogle Scholar
  190. Pala A, Petersen CCH (2015) In vivo measurement of cell-type-specific synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel cortex. Neuron 85:68–75PubMedPubMedCentralCrossRefGoogle Scholar
  191. Park SI, Shin G, Banks A, McCall JG, Siuda ER, Schmidt MJ, Chung HU, Noh KN, Mun JG-H, Rhodes J, Bruchas MR, Rogers JA (2015) Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. J Neural Eng 12:56002CrossRefGoogle Scholar
  192. Pedreira C, Martinez J, Ison MJ, Quian Quiroga R (2012) How many neurons can we see with current spike sorting algorithms? J Neurosci Methods 211:58–65PubMedPubMedCentralCrossRefGoogle Scholar
  193. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136PubMedPubMedCentralCrossRefGoogle Scholar
  194. Plaza SM, Scheffer LK, Chklovskii DB (2014) Toward large-scale connectome reconstructions. Curr Opin Neurobiol 25:201–210PubMedCrossRefGoogle Scholar
  195. Potez S, Larkum ME (2008) Effect of common anesthetics on dendritic properties in layer 5 neocortical pyramidal neurons. J Neurophysiol 99:1394–1407PubMedCrossRefGoogle Scholar
  196. Poulet JFA, Petersen CCH (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885PubMedCrossRefGoogle Scholar
  197. Preston-Ferrer P, Coletta S, Frey M, Burgalossi A (2016) Anatomical organization of presubicular head-direction circuits. Elife 5Google Scholar
  198. Quilichini P, Sirota A, Buzsáki G (2010) Intrinsic circuit organization and theta-gamma oscillation dynamics in the entorhinal cortex of the rat. J Neurosci 30:11128–11142PubMedPubMedCentralCrossRefGoogle Scholar
  199. Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258PubMedPubMedCentralCrossRefGoogle Scholar
  200. Ramirez S, Liu X, Lin P-A, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–391PubMedCrossRefGoogle Scholar
  201. Ramsden HL, Sürmeli G, McDonagh SG, Nolan MF (2015) Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression. PLoS Comput Biol 11:e1004032PubMedPubMedCentralCrossRefGoogle Scholar
  202. Rancz EA, Franks KM, Schwarz MK, Pichler B, Schaefer AT, Margrie TW (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat Neurosci 14:527–532PubMedPubMedCentralCrossRefGoogle Scholar
  203. Ravassard P, Kees A, Willers B, Ho D, Aharoni D, Cushman J, Aghajan ZM, Mehta MR (2013) Multisensory control of hippocampal spatiotemporal selectivity. Science 340:1342–1346PubMedPubMedCentralCrossRefGoogle Scholar
  204. Ray S, Naumann R, Burgalossi A, Tang Q, Schmidt H, Brecht M (2014) Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science 343:891–896PubMedCrossRefGoogle Scholar
  205. Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317:1230–1233PubMedCrossRefGoogle Scholar
  206. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775PubMedCrossRefGoogle Scholar
  207. Rich PD, Liaw H-P, Lee AK (2014) Place cells. Large environments reveal the statistical structure governing hippocampal representations. Science 345:814–817PubMedCrossRefGoogle Scholar
  208. Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsáki G (2012) Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15:769–775PubMedPubMedCentralCrossRefGoogle Scholar
  209. Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK (2006) Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat. J Neurophysiol 96:4–14PubMedCrossRefGoogle Scholar
  210. Sanders H, Rennó-Costa C, Idiart M, Lisman J (2015) Grid cells and place cells: an integrated view of their navigational and memory function. Trends Neurosci 38:763–775PubMedPubMedCentralCrossRefGoogle Scholar
  211. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser M-B, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762CrossRefGoogle Scholar
  212. Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JND (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106:19557–19562PubMedPubMedCentralCrossRefGoogle Scholar
  213. Schmid LC, Mittag M, Poll S, Steffen J, Wagner J, Geis H-R, Schwarz I, Schmidt B, Schwarz MK, Remy S, Fuhrmann M (2016) Dysfunction of somatostatin-positive interneurons associated with memory deficits in an Alzheimer’s disease model. Neuron 92:114–125PubMedCrossRefGoogle Scholar
  214. Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16:325–331PubMedCrossRefGoogle Scholar
  215. Schwarz C, Hentschke H, Butovas S, Haiss F, Stüttgen MC, Gerdjikov TV, Bergner CG, Waiblinger C (2010) The head-fixed behaving rat—procedures and pitfalls. Somatosens Mot Res 27:131–148PubMedPubMedCentralCrossRefGoogle Scholar
  216. Scott BB, Brody CD, Tank DW (2013) Cellular resolution functional imaging in behaving rats using voluntary head restraint. Neuron 80:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  217. Sejnowski TJ, Churchland PS, Movshon JA (2014) Putting big data to good use in neuroscience. Nat Neurosci 17:1440–1441PubMedPubMedCentralCrossRefGoogle Scholar
  218. Seung HS, Sümbül U (2014) Neuronal cell types and connectivity: lessons from the retina. Neuron 83:1262–1272PubMedPubMedCentralCrossRefGoogle Scholar
  219. Sharp PE (1996) Multiple spatial/behavioral correlates for cells in the rat postsubiculum: multiple regression analysis and comparison to other hippocampal areas. Cereb Cortex 6:238–259PubMedCrossRefGoogle Scholar
  220. Shoham S, O’Connor DH, Segev R (2006) How silent is the brain: is there a “dark matter” problem in neuroscience? J Comp Physiol A 192:777–784CrossRefGoogle Scholar
  221. Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP (2011) Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct Funct 216:301–317PubMedPubMedCentralCrossRefGoogle Scholar
  222. Sofroniew NJ, Cohen JD, Lee AK, Svoboda K (2014) Natural whisker-guided behavior by head-fixed mice in tactile virtual reality. J Neurosci 34:9537–9550PubMedPubMedCentralCrossRefGoogle Scholar
  223. Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868PubMedCrossRefGoogle Scholar
  224. Somogyi P, Katona L, Klausberger T, Lasztóczi B, Viney TJ (2014) Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philos Trans R Soc Lond B Biol Sci 369:20120518PubMedPubMedCentralCrossRefGoogle Scholar
  225. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100:7319–7324PubMedPubMedCentralCrossRefGoogle Scholar
  226. Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S (2011) Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science 334:1415–1420PubMedCrossRefGoogle Scholar
  227. Sümbül U, Song S, McCulloch K, Becker M, Lin B, Sanes JR, Masland RH, Seung HS (2014) A genetic and computational approach to structurally classify neuronal types. Nat Commun 5:3512PubMedPubMedCentralCrossRefGoogle Scholar
  228. Sun C, Kitamura T, Yamamoto J, Martin J, Pignatelli M, Kitch LJ, Schnitzer MJ, Tonegawa S (2015) Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proc Natl Acad Sci U S A 112:9466–9471PubMedPubMedCentralCrossRefGoogle Scholar
  229. Swanson LW, Lichtman JW (2016) From Cajal to Connectome and beyond. Annu Rev Neurosci 39:197–216PubMedCrossRefGoogle Scholar
  230. Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K (2016) Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164:792–804PubMedPubMedCentralCrossRefGoogle Scholar
  231. Tang Q, Brecht M, Burgalossi A (2014a) Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 9:2369–2381PubMedCrossRefGoogle Scholar
  232. Tang Q, Burgalossi A, Ebbesen CL, Ray S, Naumann R, Schmidt H, Spicher D, Brecht M (2014b) Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex. Neuron 84:1191–1197PubMedPubMedCentralCrossRefGoogle Scholar
  233. Tang Q, Ebbesen CL, Sanguinetti-Scheck JI, Preston-Ferrer P, Gundlfinger A, Winterer J, Beed P, Ray S, Naumann R, Schmitz D, Brecht M, Burgalossi A (2015) Anatomical organization and spatiotemporal firing patterns of layer 3 neurons in the rat medial entorhinal cortex. J Neurosci 35:12346–12,354PubMedPubMedCentralCrossRefGoogle Scholar
  234. Tang Q, Burgalossi A, Ebbesen CL, Sanguinetti-Scheck JI, Schmidt H, Tukker JJ, Naumann R, Ray S, Preston-Ferrer P, Schmitz D, Brecht M (2016) Functional architecture of the rat parasubiculum. J Neurosci 36:2289–2301PubMedPubMedCentralCrossRefGoogle Scholar
  235. Tao C, Zhang G, Xiong Y, Zhou Y (2015) Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience. Front Neural Circuits 9:23PubMedPubMedCentralCrossRefGoogle Scholar
  236. Tasic B et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346PubMedPubMedCentralCrossRefGoogle Scholar
  237. Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30PubMedCrossRefGoogle Scholar
  238. Taube JS, Muller RU, Ranck JBJ (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435PubMedCrossRefGoogle Scholar
  239. Teeters JL et al (2015) Neurodata without Borders: creating a common data format for neurophysiology. Neuron 88:629–634PubMedCrossRefGoogle Scholar
  240. Thurley K, Ayaz A (2017) Virtual reality systems for rodents. Curr Zool 63:109–119PubMedCrossRefGoogle Scholar
  241. Tonegawa S, Liu X, Ramirez S, Redondo R (2015) Memory engram cells have come of age. Neuron 87:918–931PubMedCrossRefGoogle Scholar
  242. Tsuno Y, Chapman GW, Hasselmo ME (2015) Rebound spiking properties of mouse medial entorhinal cortex neurons in vivo. Eur J Neurosci 42:2974–2984PubMedPubMedCentralCrossRefGoogle Scholar
  243. Tukker JJ, Fuentealba P, Hartwich K, Somogyi P, Klausberger T (2007) Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci 27:8184–8189PubMedPubMedCentralCrossRefGoogle Scholar
  244. Tukker JJ, Lasztóczi B, Katona L, Roberts JDB, Pissadaki EK, Dalezios Y, Márton L, Zhang L, Klausberger T, Somogyi P (2013) Distinct dendritic arborization and in vivo firing patterns of parvalbumin-expressing basket cells in the hippocampal area CA3. J Neurosci 33:6809–6825PubMedPubMedCentralCrossRefGoogle Scholar
  245. Tukker JJ, Tang Q, Burgalossi A, Brecht M (2015) Head-directional tuning and theta modulation of anatomically identified neurons in the presubiculum. J Neurosci 35:15391–15395PubMedPubMedCentralCrossRefGoogle Scholar
  246. Valero M, Cid E, Averkin RG, Aguilar J, Sanchez-Aguilera A, Viney TJ, Gomez-Dominguez D, Bellistri E, de la Prida LM (2015) Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. Nat Neurosci 18:1281–1290PubMedPubMedCentralCrossRefGoogle Scholar
  247. Varga C, Lee SY, Soltesz I (2010) Target-selective GABAergic control of entorhinal cortex output. Nat Neurosci 13:822–824PubMedPubMedCentralCrossRefGoogle Scholar
  248. Varga C, Golshani P, Soltesz I (2012) Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. PNAS 109:E2726–E2734PubMedCrossRefGoogle Scholar
  249. Varga C, Oijala M, Lish J, Szabo GG, Bezaire M, Marchionni I, Golshani P, Soltesz I (2014) Functional fission of parvalbumin interneuron classes during fast network events. Elife 3Google Scholar
  250. Vélez-Fort M, Rousseau CV, Niedworok CJ, Wickersham IR, Rancz EA, Brown APY, Strom M, Margrie TW (2014) The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83:1431–1443PubMedPubMedCentralCrossRefGoogle Scholar
  251. Viney TJ, Lasztoczi B, Katona L, Crump MG, Tukker JJ, Klausberger T, Somogyi P (2013) Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat Neurosci 16:1802–1811PubMedPubMedCentralCrossRefGoogle Scholar
  252. Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW, Priebe CE, Zlatic M (2014) Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344:386–392PubMedCrossRefGoogle Scholar
  253. Wang Y, Liu Y-Z, Wang S-Y, Wang Z (2016) In vivo whole-cell recording with high success rate in anaesthetized and awake mammalian brains. Mol Brain 9:86PubMedPubMedCentralCrossRefGoogle Scholar
  254. Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rózsa B, Conzelmann K-K, Roska B (2015) Presynaptic networks. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349:70–74PubMedCrossRefGoogle Scholar
  255. Westphalen RI, Hemmings HC (2006) Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: 4-aminopyridine-evoked release. J Pharmacol Exp Ther 316:216–223PubMedCrossRefGoogle Scholar
  256. Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA (2015) a knowledge base of neuron types in the rodent hippocampus. Elife 4Google Scholar
  257. Wiltschko AB, Johnson MJ, Iurilli G, Peterson RE, Katon JM, Pashkovski SL, Abraira VE, Adams RP, Datta SR (2015) Mapping sub-second structure in mouse behavior. Neuron 88:1121–1135PubMedPubMedCentralCrossRefGoogle Scholar
  258. Winterer J, Maier N, Wozny C, Beed P, Breustedt J, Evangelista R, Peng Y, D’Albis T, Kempter R, Schmitz D (2017) Excitatory microcircuits within superficial layers of the medial entorhinal cortex. Cell Rep 19:1110–1116PubMedCrossRefGoogle Scholar
  259. Wolfe J, Houweling AR, Brecht M (2010) Sparse and powerful cortical spikes. Curr Opin Neurobiol 20:306–312PubMedCrossRefGoogle Scholar
  260. Wu F, Stark E, Ku P-C, Wise KD, Buzsáki G, Yoon E (2015) Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88:1136–1148PubMedPubMedCentralCrossRefGoogle Scholar
  261. Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995a) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46PubMedCrossRefGoogle Scholar
  262. Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G (1995b) Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78–90PubMedCrossRefGoogle Scholar
  263. Youngstrom IA, Strowbridge BW (2012) Visual landmarks facilitate rodent spatial navigation in virtual reality environments. Learn Mem 19:84–90PubMedPubMedCentralCrossRefGoogle Scholar
  264. Zehl L, Jaillet F, Stoewer A, Grewe J, Sobolev A, Wachtler T, Brochier TG, Riehle A, Denker M, Grün S (2016) Handling metadata in a neurophysiology laboratory. Front Neuroinform 10:26PubMedPubMedCentralCrossRefGoogle Scholar
  265. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142CrossRefGoogle Scholar
  266. Zhu JJ, Connors BW (1999) Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol 81:1171–1183PubMedCrossRefGoogle Scholar
  267. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16:264–266PubMedPubMedCentralCrossRefGoogle Scholar
  268. Ziv Y, Ghosh KK (2015) Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents. Curr Opin Neurobiol 32:141–147PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Neuroscience Research CenterCharité University Medicine BerlinBerlinGermany

Personalised recommendations