Advertisement

Resources for Modeling in Computational Neuroscience

  • Justas Birgiolas
  • Sharon M. Crook
  • Richard C. GerkinEmail author
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)

Abstract

Computational models of the nervous system help researchers discover principles of brain operation and form/function relationships. They can provide a framework for understanding empirical data and serve as an experimental platform to test concepts and intuitions. In practice, the effective use of theoretical, computational, and information theoretic approaches requires an ongoing cycle of experiments, data analysis, modeling studies, and model-generated predictions that are tested by further empirical work. This cycle requires that computational scientists be able to build on the work of others. In this chapter, we provide an overview of simulation tools and resources for creating computational models of hippocampal function. First, we outline some of the most widely used software applications for simulating models at various levels of biological detail. We also describe resources that aid in reproducibility by allowing for model sharing and reuse, for portability of models across simulation platforms, and for validation of models against experimental data.

Keywords

Model reproducibility Simulation software Model validation Data-driven models Model sharing 

Notes

Acknowledgments

This work was supported in part by the National Institute on Deafness and Other Communication Disorders and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award numbers 1F31DC016811 to JB and R01MH106674 to SMC and R01EB021711 to RCG. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251.  https://doi.org/10.1523/JNEUROSCI.2055-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6:30.  https://doi.org/10.3389/fninf.2012.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011) Cython: the best of both worlds. Comput Sci Eng 13:31–39CrossRefGoogle Scholar
  4. Birgiolas J, Dietrich SW, Crook S, Rajadesingan A, Zhang C, Penchala SV, Addepalli V (2015) Ontology-assisted keyword search for NeuroML models. ACM, New York, p 37Google Scholar
  5. Bota M, Dong H-W, Swanson LW (2005) Brain architecture management system. Neuroinformatics 3:15–47.  https://doi.org/10.1385/NI:3:1:015 CrossRefPubMedGoogle Scholar
  6. Brent RP (2013) Algorithms for minimization without derivatives. Courier Corporation, North ChelmsfordGoogle Scholar
  7. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cachat J, Bandrowski A, Grethe JS, Gupta A, Astakhov V, Imam F, Larson SD, Martone ME (2012) A survey of the neuroscience resource landscape: perspectives from the neuroscience information framework. Int Rev Neurobiol 103:39–68.  https://doi.org/10.1016/B978-0-12-388408-4.00003-4 CrossRefPubMedGoogle Scholar
  9. Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol 6:e1000886CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA (2014) LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2. Front Neuroinform 8:79CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carnevale T (2007) Neuron simulation environment. Scholarpedia 2:1378CrossRefGoogle Scholar
  12. Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong TM, Feldman V (2013) Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: Proceedings of the international joint conference on neural networks (IJCNN 2013). IEEE, Piscataway, pp 1–10Google Scholar
  14. Cassidy AS, Alvarez-Icaza R, Akopyan F, Sawada J, Arthur JV, Merolla PA, Datta P, Tallada MG, Taba B, Andreopoulos A (2014) Real-time scalable cortical computing at 46 giga-synaptic OPS/watt with. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE, Piscataway, pp 27–38CrossRefGoogle Scholar
  15. Cheung K, Schultz SR, Luk W (2012) A large-scale spiking neural network accelerator for FPGA systems. In: Proceedings of the 22nd international conference on artificial neural networks and machine learning – volume part I. Springer, Berlin/Heidelberg, pp 113–120Google Scholar
  16. Crasto CJ, Marenco LN, Liu N, Morse TM, Cheung K-H, Lai PC, Bahl G, Masiar P, Lam HYK, Lim E, Chen H, Nadkarni P, Migliore M, Miller PL, Shepherd GM (2007) SenseLab: new developments in disseminating neuroscience information. Brief Bioinform 8:150–162.  https://doi.org/10.1093/bib/bbm018 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crook SM, Dietrich S (2014) Model exchange with the NeuroML model database. BMC Neurosci 15:1CrossRefGoogle Scholar
  18. Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5:96–104CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dalcín L, Paz R, Storti M (2005) MPI for Python. J Parallel Distrib Comput 65:1108–1115CrossRefGoogle Scholar
  20. Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2007) PyNN: a common Interface for neuronal network simulators. Front Neuroinform 2:11–11Google Scholar
  21. Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg Ö (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8:43–60CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dudani N, Ray S, George S, Bhalla US (2009) Multiscale modeling and interoperability in MOOSE. BMC Neurosci 10:1CrossRefGoogle Scholar
  23. Dura-Bernal S, Suter BA, Neymotin SA, Kerr CC, Quintana A, Gleeson P, Shepherd GMG, Lytton W (2016) NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. BMC Neurosci 17:P105Google Scholar
  24. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Tang C, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338:1202–1205CrossRefPubMedGoogle Scholar
  25. Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2007) PyNEST: a convenient Interface to the NEST simulator. Front Neuroinform 2:12–12Google Scholar
  26. Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, PhiladelphiaCrossRefGoogle Scholar
  27. Fidjeland AK, Roesch EB, Shanahan MP, Luk W (2009) NeMo: a platform for neural modelling of spiking neurons using GPUs. In: 20th IEEE international conference on application-specific systems, architectures and processors, 2009. IEEE, Piscataway, pp 137–144CrossRefGoogle Scholar
  28. Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63CrossRefPubMedPubMedCentralGoogle Scholar
  29. Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013) Overview of the SpiNNaker system architecture. IEEE Trans Comput 62:2454–2467CrossRefGoogle Scholar
  30. Gewaltig M-O, Diesmann M (2007) NEST (neural simulation tool). Scholarpedia 2:1430CrossRefGoogle Scholar
  31. Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219–235CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:e1000815CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gleeson P, Silver A, Cantarelli M (2015) Open source brain. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York, pp 2153–2156Google Scholar
  34. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. BMC Neurosci 9:1–2CrossRefGoogle Scholar
  35. Goodman DFM, Brette R (2009) The brian simulator. Front Neurosci 3:26CrossRefGoogle Scholar
  36. Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. BMC Syst Biol 6:36CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17:7–11.  https://doi.org/10.1023/B:JCNS.0000023869.22017.2e CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hines ML, Davison AP, Muller E (2008) NEURON and Python. Front Neuroinform 3:1–1Google Scholar
  39. Idili G, Cantarelli M, Buibas M, Busbice T, Coggan J, Grove C, Khayrulin S, Palyanov A, Larson S (2011) Managing complexity in multi-algorithm. In: Multi-scale Biological simulations: an integrated software engineering and Neuroinformatics approach. Front Neuroinform. Conference Abstract: 4th INCF Congress of Neuroinformatics. https://doi.org/10.3389/conf.fninf.2011.08.00112
  40. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070.  https://doi.org/10.1109/TNN.2004.832719 CrossRefPubMedGoogle Scholar
  41. Johnson SG (2014) The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt
  42. Jones E, Oliphant T, Peterson P (2001) SciPy: Open source scientific tools for Python. http://www.scipy.org
  43. Khan MM, Lester DR, Plana LA, Rast A, Jin X, Painkras E, Furber SB (2008) SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In: Proceedings of the international joint conference on neural networks (IJCNN 2008). IEEE, Piscataway, pp 2849–2856Google Scholar
  44. Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M (2014) Spiking network simulation code for petascale computers. Front Neuroinform 8:78CrossRefPubMedPubMedCentralGoogle Scholar
  45. Laird AR, Lancaster JJ, Fox PT (2005) BrainMap. Neuroinformatics 3:65–77.  https://doi.org/10.1385/NI:3:1:065 CrossRefPubMedGoogle Scholar
  46. Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635Google Scholar
  47. Larson SD, Martone ME (2013) NeuroLex.org: an online framework for neuroscience knowledge. Front. Neuroinformatics 7:18.  https://doi.org/10.3389/fninf.2013.00018 CrossRefGoogle Scholar
  48. Marenco L, Wang R, Shepherd GM, Miller PL (2010) The NIF DISCO framework: facilitating automated integration of neuroscience content on the web. Neuroinformatics 8:101–112.  https://doi.org/10.1007/s12021-010-9068-8 CrossRefPubMedGoogle Scholar
  49. Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160.  https://doi.org/10.1038/nrn1848 CrossRefPubMedGoogle Scholar
  50. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J-D, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril J-P, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé J-V, Magalhães BRC, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J-R, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492.  https://doi.org/10.1016/j.cell.2015.09.029 CrossRefGoogle Scholar
  51. Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, Wong M, Santini S, Ellisman MH (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics 1:379–395.  https://doi.org/10.1385/NI:1:4:379 CrossRefPubMedGoogle Scholar
  52. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–673CrossRefPubMedGoogle Scholar
  53. Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50CrossRefPubMedPubMedCentralGoogle Scholar
  54. Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753.  https://doi.org/10.1093/nar/gkp889 CrossRefPubMedGoogle Scholar
  55. Omar C, Aldrich J, Gerkin RC (2014) Collaborative infrastructure for test-driven scientific model validation. In: Companion proceedings of the 36th international conference on software engineering. ACM, New York, pp 524–527Google Scholar
  56. Pecevski D, Natschläger T, Schuch K (2009) PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinform 3:11CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng 9:21–29CrossRefGoogle Scholar
  58. Ranjan R, Khazen G, Gambazzi L, Ramaswamy S, Hill SL, Schürmann F, Markram H (2011) Channelpedia: an integrative and interactive database for ion channels. Front Neuroinform 5:36.  https://doi.org/10.3389/fninf.2011.00036 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386CrossRefPubMedGoogle Scholar
  60. Sarma GP, Jacobs TW, Watts MD, Ghayoomie SV, Larson SD, Gerkin RC (2016) Unit testing, model validation, and biological simulation. F1000Research 5:1946.  https://doi.org/10.12688/f1000research.9315.1 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schemmel J, Briiderle D, Griibl A, Hock M, Meier K, Millner S (2010) A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS). IEEE, Piscataway, pp 1947–1950CrossRefGoogle Scholar
  62. Schemmel J, Grübl A, Hartmann S, Kononov A, Mayr C, Meier K, Millner S, Partzsch J, Schiefer S, Scholze S (2012) Live demonstration: a scaled-down version of the brainscales wafer-scale neuromorphic system. In: Proceedings of 2012 IEEE international symposium on circuits and systems (ISCAS). IEEE, Piscataway, pp 702–702CrossRefGoogle Scholar
  63. Stewart TC, Tripp B, Eliasmith C (2009) Python scripting in the Nengo simulator. Front Neuroinform 3:7CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–127Google Scholar
  65. Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, Currie M, Cantarelli M, Idili G, Larson S (2014) OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front Comput Neurosci 8:137CrossRefPubMedPubMedCentralGoogle Scholar
  66. Teeters JL, Sommer FT (2009) CRCNS.ORG: a repository of high-quality data sets and tools for computational neuroscience. BMC Neurosci 10:1–1.  https://doi.org/10.1186/1471-2202-10-S1-S6 CrossRefGoogle Scholar
  67. Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A, Denisov G, Siegle JH, Olsen SR, Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G, Koch C, Meister M, Svoboda K, Sommer FT (2015) Neurodata without Borders: creating a common data format for neurophysiology. Neuron 88:629–634.  https://doi.org/10.1016/j.neuron.2015.10.025 CrossRefPubMedGoogle Scholar
  68. Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC (2014) NeuroElectro: a window to the world’s neuron electrophysiology data. Front Neuroinform 8:40.  https://doi.org/10.3389/fninf.2014.00040 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79.  https://doi.org/10.1016/j.neuroimage.2013.05.041 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. BMC Neurosci 8:1CrossRefGoogle Scholar
  71. Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241–251CrossRefPubMedGoogle Scholar
  72. Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J-D, Muller EB, Schürmann F, Segev I, Markram H (2016) BluePyOpt: leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front Neuroinform 10.  https://doi.org/10.3389/fninf.2016.00017
  73. Vella M, Cannon RC, Crook S, Davison AP, Ganapathy G, Robinson HPC, Silver RA, Gleeson P (2014) libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience. Front Neuroinform 8:38CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA (2015) Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. eLife.  https://doi.org/10.7554/eLife.09960
  75. Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: a system for simulating neural networks. In: Touretzky D (ed) Advances in neural information processing systems, vol 1. Morgan Kaufmann Publishers Inc, San Francisco, pp 485–492Google Scholar
  76. Yavuz E, Turner J, Nowotny T (2016) GeNN: a code generation framework for accelerated brain simulations. Sci Rep 6:18854CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Justas Birgiolas
    • 1
  • Sharon M. Crook
    • 2
  • Richard C. Gerkin
    • 1
    Email author
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.School of Mathematical and Statistical Sciences, School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations