Hippocampal Microcircuits pp 805-828 | Cite as
Resources for Modeling in Computational Neuroscience
Abstract
Computational models of the nervous system help researchers discover principles of brain operation and form/function relationships. They can provide a framework for understanding empirical data and serve as an experimental platform to test concepts and intuitions. In practice, the effective use of theoretical, computational, and information theoretic approaches requires an ongoing cycle of experiments, data analysis, modeling studies, and model-generated predictions that are tested by further empirical work. This cycle requires that computational scientists be able to build on the work of others. In this chapter, we provide an overview of simulation tools and resources for creating computational models of hippocampal function. First, we outline some of the most widely used software applications for simulating models at various levels of biological detail. We also describe resources that aid in reproducibility by allowing for model sharing and reuse, for portability of models across simulation platforms, and for validation of models against experimental data.
Keywords
Model reproducibility Simulation software Model validation Data-driven models Model sharingNotes
Acknowledgments
This work was supported in part by the National Institute on Deafness and Other Communication Disorders and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award numbers 1F31DC016811 to JB and R01MH106674 to SMC and R01EB021711 to RCG. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
References
- Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247–9251. https://doi.org/10.1523/JNEUROSCI.2055-07.2007 PubMedGoogle Scholar
- Bakker R, Wachtler T, Diesmann M (2012) CoCoMac 2.0 and the future of tract-tracing databases. Front Neuroinform 6:30. https://doi.org/10.3389/fninf.2012.00030 PubMedPubMedCentralGoogle Scholar
- Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K (2011) Cython: the best of both worlds. Comput Sci Eng 13:31–39Google Scholar
- Birgiolas J, Dietrich SW, Crook S, Rajadesingan A, Zhang C, Penchala SV, Addepalli V (2015) Ontology-assisted keyword search for NeuroML models. ACM, New York, p 37Google Scholar
- Bota M, Dong H-W, Swanson LW (2005) Brain architecture management system. Neuroinformatics 3:15–47. https://doi.org/10.1385/NI:3:1:015 PubMedGoogle Scholar
- Brent RP (2013) Algorithms for minimization without derivatives. Courier Corporation, North ChelmsfordGoogle Scholar
- Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398PubMedPubMedCentralGoogle Scholar
- Cachat J, Bandrowski A, Grethe JS, Gupta A, Astakhov V, Imam F, Larson SD, Martone ME (2012) A survey of the neuroscience resource landscape: perspectives from the neuroscience information framework. Int Rev Neurobiol 103:39–68. https://doi.org/10.1016/B978-0-12-388408-4.00003-4 PubMedGoogle Scholar
- Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol 6:e1000886PubMedPubMedCentralGoogle Scholar
- Cannon RC, Gleeson P, Crook S, Ganapathy G, Marin B, Piasini E, Silver RA (2014) LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2. Front Neuroinform 8:79PubMedPubMedCentralGoogle Scholar
- Carnevale T (2007) Neuron simulation environment. Scholarpedia 2:1378Google Scholar
- Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, CambridgeGoogle Scholar
- Cassidy AS, Merolla P, Arthur JV, Esser SK, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong TM, Feldman V (2013) Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: Proceedings of the international joint conference on neural networks (IJCNN 2013). IEEE, Piscataway, pp 1–10Google Scholar
- Cassidy AS, Alvarez-Icaza R, Akopyan F, Sawada J, Arthur JV, Merolla PA, Datta P, Tallada MG, Taba B, Andreopoulos A (2014) Real-time scalable cortical computing at 46 giga-synaptic OPS/watt with. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE, Piscataway, pp 27–38Google Scholar
- Cheung K, Schultz SR, Luk W (2012) A large-scale spiking neural network accelerator for FPGA systems. In: Proceedings of the 22nd international conference on artificial neural networks and machine learning – volume part I. Springer, Berlin/Heidelberg, pp 113–120Google Scholar
- Crasto CJ, Marenco LN, Liu N, Morse TM, Cheung K-H, Lai PC, Bahl G, Masiar P, Lam HYK, Lim E, Chen H, Nadkarni P, Migliore M, Miller PL, Shepherd GM (2007) SenseLab: new developments in disseminating neuroscience information. Brief Bioinform 8:150–162. https://doi.org/10.1093/bib/bbm018 PubMedPubMedCentralGoogle Scholar
- Crook SM, Dietrich S (2014) Model exchange with the NeuroML model database. BMC Neurosci 15:1Google Scholar
- Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5:96–104PubMedPubMedCentralGoogle Scholar
- Dalcín L, Paz R, Storti M (2005) MPI for Python. J Parallel Distrib Comput 65:1108–1115Google Scholar
- Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2007) PyNN: a common Interface for neuronal network simulators. Front Neuroinform 2:11–11Google Scholar
- Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg Ö (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics 8:43–60PubMedPubMedCentralGoogle Scholar
- Dudani N, Ray S, George S, Bhalla US (2009) Multiscale modeling and interoperability in MOOSE. BMC Neurosci 10:1Google Scholar
- Dura-Bernal S, Suter BA, Neymotin SA, Kerr CC, Quintana A, Gleeson P, Shepherd GMG, Lytton W (2016) NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. BMC Neurosci 17:P105Google Scholar
- Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Tang C, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338:1202–1205PubMedGoogle Scholar
- Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2007) PyNEST: a convenient Interface to the NEST simulator. Front Neuroinform 2:12–12Google Scholar
- Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, PhiladelphiaGoogle Scholar
- Fidjeland AK, Roesch EB, Shanahan MP, Luk W (2009) NeMo: a platform for neural modelling of spiking neurons using GPUs. In: 20th IEEE international conference on application-specific systems, architectures and processors, 2009. IEEE, Piscataway, pp 137–144Google Scholar
- Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S (2014) A flexible, interactive software tool for fitting the parameters of neuronal models. Front Neuroinform 8:63PubMedPubMedCentralGoogle Scholar
- Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013) Overview of the SpiNNaker system architecture. IEEE Trans Comput 62:2454–2467Google Scholar
- Gewaltig M-O, Diesmann M (2007) NEST (neural simulation tool). Scholarpedia 2:1430Google Scholar
- Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219–235PubMedPubMedCentralGoogle Scholar
- Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:e1000815PubMedPubMedCentralGoogle Scholar
- Gleeson P, Silver A, Cantarelli M (2015) Open source brain. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York, pp 2153–2156Google Scholar
- Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in Python. BMC Neurosci 9:1–2Google Scholar
- Goodman DFM, Brette R (2009) The brian simulator. Front Neurosci 3:26Google Scholar
- Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. BMC Syst Biol 6:36PubMedPubMedCentralGoogle Scholar
- Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17:7–11. https://doi.org/10.1023/B:JCNS.0000023869.22017.2e PubMedPubMedCentralGoogle Scholar
- Hines ML, Davison AP, Muller E (2008) NEURON and Python. Front Neuroinform 3:1–1Google Scholar
- Idili G, Cantarelli M, Buibas M, Busbice T, Coggan J, Grove C, Khayrulin S, Palyanov A, Larson S (2011) Managing complexity in multi-algorithm. In: Multi-scale Biological simulations: an integrated software engineering and Neuroinformatics approach. Front Neuroinform. Conference Abstract: 4th INCF Congress of Neuroinformatics. https://doi.org/10.3389/conf.fninf.2011.08.00112
- Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070. https://doi.org/10.1109/TNN.2004.832719 PubMedGoogle Scholar
- Johnson SG (2014) The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt
- Jones E, Oliphant T, Peterson P (2001) SciPy: Open source scientific tools for Python. http://www.scipy.org
- Khan MM, Lester DR, Plana LA, Rast A, Jin X, Painkras E, Furber SB (2008) SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In: Proceedings of the international joint conference on neural networks (IJCNN 2008). IEEE, Piscataway, pp 2849–2856Google Scholar
- Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M (2014) Spiking network simulation code for petascale computers. Front Neuroinform 8:78PubMedPubMedCentralGoogle Scholar
- Laird AR, Lancaster JJ, Fox PT (2005) BrainMap. Neuroinformatics 3:65–77. https://doi.org/10.1385/NI:3:1:065 PubMedGoogle Scholar
- Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635Google Scholar
- Larson SD, Martone ME (2013) NeuroLex.org: an online framework for neuroscience knowledge. Front. Neuroinformatics 7:18. https://doi.org/10.3389/fninf.2013.00018 Google Scholar
- Marenco L, Wang R, Shepherd GM, Miller PL (2010) The NIF DISCO framework: facilitating automated integration of neuroscience content on the web. Neuroinformatics 8:101–112. https://doi.org/10.1007/s12021-010-9068-8 PubMedGoogle Scholar
- Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160. https://doi.org/10.1038/nrn1848 PubMedGoogle Scholar
- Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GAA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol J-D, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril J-P, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé J-V, Magalhães BRC, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez J-R, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492. https://doi.org/10.1016/j.cell.2015.09.029 PubMedGoogle Scholar
- Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, Wong M, Santini S, Ellisman MH (2003) The cell-centered database: a database for multiscale structural and protein localization data from light and electron microscopy. Neuroinformatics 1:379–395. https://doi.org/10.1385/NI:1:4:379 PubMedGoogle Scholar
- Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y (2014) A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–673PubMedGoogle Scholar
- Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50PubMedPubMedCentralGoogle Scholar
- Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753. https://doi.org/10.1093/nar/gkp889 PubMedGoogle Scholar
- Omar C, Aldrich J, Gerkin RC (2014) Collaborative infrastructure for test-driven scientific model validation. In: Companion proceedings of the 36th international conference on software engineering. ACM, New York, pp 524–527Google Scholar
- Pecevski D, Natschläger T, Schuch K (2009) PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinform 3:11PubMedPubMedCentralGoogle Scholar
- Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng 9:21–29Google Scholar
- Ranjan R, Khazen G, Gambazzi L, Ramaswamy S, Hill SL, Schürmann F, Markram H (2011) Channelpedia: an integrative and interactive database for ion channels. Front Neuroinform 5:36. https://doi.org/10.3389/fninf.2011.00036 PubMedPubMedCentralGoogle Scholar
- Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386PubMedGoogle Scholar
- Sarma GP, Jacobs TW, Watts MD, Ghayoomie SV, Larson SD, Gerkin RC (2016) Unit testing, model validation, and biological simulation. F1000Research 5:1946. https://doi.org/10.12688/f1000research.9315.1 PubMedPubMedCentralGoogle Scholar
- Schemmel J, Briiderle D, Griibl A, Hock M, Meier K, Millner S (2010) A wafer-scale neuromorphic hardware system for large-scale neural modeling. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS). IEEE, Piscataway, pp 1947–1950Google Scholar
- Schemmel J, Grübl A, Hartmann S, Kononov A, Mayr C, Meier K, Millner S, Partzsch J, Schiefer S, Scholze S (2012) Live demonstration: a scaled-down version of the brainscales wafer-scale neuromorphic system. In: Proceedings of 2012 IEEE international symposium on circuits and systems (ISCAS). IEEE, Piscataway, pp 702–702Google Scholar
- Stewart TC, Tripp B, Eliasmith C (2009) Python scripting in the Nengo simulator. Front Neuroinform 3:7PubMedPubMedCentralGoogle Scholar
- Stiles JR, Bartol TM (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–127Google Scholar
- Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, Currie M, Cantarelli M, Idili G, Larson S (2014) OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front Comput Neurosci 8:137PubMedPubMedCentralGoogle Scholar
- Teeters JL, Sommer FT (2009) CRCNS.ORG: a repository of high-quality data sets and tools for computational neuroscience. BMC Neurosci 10:1–1. https://doi.org/10.1186/1471-2202-10-S1-S6 Google Scholar
- Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A, Denisov G, Siegle JH, Olsen SR, Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzsáki G, Koch C, Meister M, Svoboda K, Sommer FT (2015) Neurodata without Borders: creating a common data format for neurophysiology. Neuron 88:629–634. https://doi.org/10.1016/j.neuron.2015.10.025 PubMedGoogle Scholar
- Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC (2014) NeuroElectro: a window to the world’s neuron electrophysiology data. Front Neuroinform 8:40. https://doi.org/10.3389/fninf.2014.00040 PubMedPubMedCentralGoogle Scholar
- Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041 PubMedPubMedCentralGoogle Scholar
- Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. BMC Neurosci 8:1Google Scholar
- Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241–251PubMedGoogle Scholar
- Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J-D, Muller EB, Schürmann F, Segev I, Markram H (2016) BluePyOpt: leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front Neuroinform 10. https://doi.org/10.3389/fninf.2016.00017
- Vella M, Cannon RC, Crook S, Davison AP, Ganapathy G, Robinson HPC, Silver RA, Gleeson P (2014) libNeuroML and PyLEMS: using Python to combine procedural and declarative modeling approaches in computational neuroscience. Front Neuroinform 8:38PubMedPubMedCentralGoogle Scholar
- Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA (2015) Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. eLife. https://doi.org/10.7554/eLife.09960
- Wilson MA, Bhalla US, Uhley JD, Bower JM (1989) GENESIS: a system for simulating neural networks. In: Touretzky D (ed) Advances in neural information processing systems, vol 1. Morgan Kaufmann Publishers Inc, San Francisco, pp 485–492Google Scholar
- Yavuz E, Turner J, Nowotny T (2016) GeNN: a code generation framework for accelerated brain simulations. Sci Rep 6:18854PubMedPubMedCentralGoogle Scholar