A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus

  • Alexander Hanuschkin
  • Man Yi Yim
  • Jakob WolfartEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


The model is a conductance-based neural network model of the brain circuit thought to be involved in pattern separation during hippocampal memory acquisition: the dentate gyrus (DG). In this chapter we explain the concepts of pattern separation and how it was tested in our model. Our hypothesis is that experimentally constrained homeostatic adaptations of intrinsic neuronal properties can restore the pattern separation ability of the DG network, if it was lost during epileptic excitability (Stegen et al. 2009; Young et al. 2009; Yim et al. 2015).



This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG) to JW (SFB780/C2, WO1563/1-1). AH was supported by the Bernstein Award Computational Neuroscience (to Ilka Diester).


  1. Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, Levelt C, Sablitzky F, Anderson PN, Lieberman AR, Verhaagen J (2004) Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61:187–202PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alme CB, Buzzetti RA, Marrone DF, Leutgeb JK, Chawla MK, Schaner MJ, Bohanick JD, Khoboko T, Leutgeb S, Moser EI, Moser MB, McNaughton BL, Barnes CA (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20:1109–1123PubMedCrossRefGoogle Scholar
  6. Almog M, Korngreen A (2016) Is realistic neuronal modeling realistic? J Neurophysiol 116:2180–2209PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amaral DG, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris RG, Amaral DG, Bliss T, O'Keefe J (eds) The hippocampus book. Oxford University Press, Oxford, New York, pp 37–114Google Scholar
  8. Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215–235PubMedCrossRefGoogle Scholar
  9. Aradi I, Soltesz I (2002) Modulation of network behaviour by changes in variance in interneuronal properties. J Physiol 538:227–251PubMedPubMedCentralCrossRefGoogle Scholar
  10. Artinian J, Peret A, Mircheva Y, Marti G, Crepel V (2015) Impaired neuronal operation through aberrant intrinsic plasticity in epilepsy. Ann Neurol 77:592–606PubMedCrossRefGoogle Scholar
  11. Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642PubMedPubMedCentralCrossRefGoogle Scholar
  12. Becker S (2005) A computational principle for hippocampal learning and neurogenesis. Hippocampus 15:722–738PubMedCrossRefGoogle Scholar
  13. Bernacchia A, Wang XJ (2013) Decorrelation by recurrent inhibition in heterogeneous neural circuits. Neural Comput 25:1732–1767PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bischofberger J (2007) Young and excitable: new neurons in memory networks. Nat Neurosci 10:273–275PubMedCrossRefGoogle Scholar
  15. Bonilha L, Yasuda CL, Rorden C, Li LM, Tedeschi H, de Oliveira E, Cendes F (2007) Does resection of the medial temporal lobe improve the outcome of temporal lobe epilepsy surgery? Epilepsia 48:571–578PubMedCrossRefGoogle Scholar
  16. Brette R et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23:349–398PubMedPubMedCentralCrossRefGoogle Scholar
  17. Buckmaster PS (2012) Mossy fiber sprouting in the dentate gyrus. Jasper’s basic mechanisms of the epilepsies [Internet]Google Scholar
  18. Carnevale NT, Hines ML (2008) The NEURON simulation environment in epilepsy research. In: Soltesz I, Staley K (eds) Computational neuroscience in epilepsy. Elsevier, London, pp 18–33CrossRefGoogle Scholar
  19. Cashdollar N, Malecki U, Rugg-Gunn FJ, Duncan JS, Lavie N, Duzel E (2009) Hippocampus-dependent and -independent theta-networks of active maintenance. Proc Natl Acad Sci U S A 106:20493–20498PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of DG granule cells contribute to pattern separation by controlling sparsity. Hippocampus 27:89–110Google Scholar
  21. Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK, Worley PF, McNaughton BL, Barnes CA (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15:579–586PubMedCrossRefGoogle Scholar
  22. Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng JK, Huang YY, Chiu CD, Lien CC (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32:62–67PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chrobak JJ, Lorincz A, Buzsaki G (2000) Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10:457–465PubMedCrossRefGoogle Scholar
  24. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213PubMedPubMedCentralCrossRefGoogle Scholar
  25. Coras R, Pauli E, Li J, Schwarz M, Rossler K, Buchfelder M, Hamer H, Stefan H, Blumcke I (2014) Differential influence of hippocampal subfields to memory formation: insights from patients with temporal pole epilepsy. Brain 137:1945PubMedCrossRefGoogle Scholar
  26. Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge/LondonGoogle Scholar
  27. de Almeida L, Idiart M, Lisman JE (2009) The input-output transformation of the hippocampal granule cells: from grid cells to place fields. J Neurosci 29:7504–7512PubMedPubMedCentralCrossRefGoogle Scholar
  28. De Schutter E (2014) The dangers of plug-and-play simulation using shared models. Neuroinformatics 12:227–228PubMedGoogle Scholar
  29. Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:e00312PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dery N, Pilgrim M, Gibala M, Gillen J, Wojtowicz JM, Macqueen G, Becker S (2013) Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front Neurosci 7:66PubMedPubMedCentralCrossRefGoogle Scholar
  31. Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, Jain S, Scharfman HE, Hen R (2016) Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 26:763–778PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566–1587PubMedCrossRefGoogle Scholar
  33. Ewell LA, Jones MV (2010) Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci 30:12597–12607PubMedPubMedCentralCrossRefGoogle Scholar
  34. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229PubMedPubMedCentralCrossRefGoogle Scholar
  35. Finnegan R, Becker S (2015) Neurogenesis paradoxically decreases both pattern separation and memory interference. Front Syst Neurosci 9:136PubMedPubMedCentralCrossRefGoogle Scholar
  36. Franzius M, Sprekeler H, Wiskott L (2007) Slowness and sparseness lead to place, head-direction, and spatial-view cells. PLoS Comput Biol 3:e166PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gibson WG, Robinson J, Bennett MR (1991) Probabilistic secretion of quanta in the central nervous system: granule cell synaptic control of pattern separation and activity regulation. Philos Trans R Soc Lond Ser B Biol Sci 332:199–220CrossRefGoogle Scholar
  38. Gilbert PE, Kesner RP (2002) The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiol Learn Mem 77:338–353PubMedCrossRefGoogle Scholar
  39. Gilbert PE, Kesner RP (2006) The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behav Brain Res 169:142–149PubMedCrossRefGoogle Scholar
  40. Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11:626–636PubMedCrossRefGoogle Scholar
  41. Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426PubMedCrossRefGoogle Scholar
  42. Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122:16–26PubMedCrossRefGoogle Scholar
  43. Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70PubMedCrossRefGoogle Scholar
  44. Heinemann U, Beck H, Dreier JP, Ficker E, Stabel J, Zhang CL (1992) The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res Suppl 7:273–280PubMedGoogle Scholar
  45. Hendrickson PJ, Yu GJ, Song D, Berger TW (2016) A million-plus neuron model of the hippocampal dentate gyrus: critical role for topography in determining spatiotemporal network dynamics. IEEE Trans Biomed Eng 63:199–209PubMedCrossRefGoogle Scholar
  46. Heng K, Haney MM, Buckmaster PS (2013) High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54:1535–1541PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209PubMedCrossRefGoogle Scholar
  48. Hoffman EP (1995) Voltage-gated ion channelopathies: inherited disorders caused by abnormal sodium, chloride, and calcium regulation in skeletal muscle. Annu Rev Med 46:431–441PubMedCrossRefGoogle Scholar
  49. Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97:2394–2409CrossRefGoogle Scholar
  50. Hsu D (2007) The dentate gyrus as a filter or gate: a look back and a look ahead. Prog Brain Res 163:601–613PubMedCrossRefGoogle Scholar
  51. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, CambridgeGoogle Scholar
  52. Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246PubMedCrossRefGoogle Scholar
  53. Jaffe DB, Ross WN, Lisman JE, Lasser-Ross N, Miyakawa H, Johnston D (1994) A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J Neurophysiol 71:1065–1077PubMedCrossRefGoogle Scholar
  54. Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76:1189–1200PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jones RS (1993) Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci 16:58–64PubMedCrossRefGoogle Scholar
  56. Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182PubMedCrossRefGoogle Scholar
  57. Kay AR, Wong RK (1987) Calcium current activation kinetics in isolated pyramidal neurones of the Ca1 region of the mature guinea-pig hippocampus. J Physiol 392:603–616PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362PubMedCrossRefGoogle Scholar
  59. Kesner RP (2013) An analysis of the dentate gyrus function. Behav Brain Res 254:1–7PubMedCrossRefGoogle Scholar
  60. Kesner RP, Gilbert PE, Wallenstein GV (2000) Testing neural network models of memory with behavioral experiments. Curr Opin Neurobiol 10:260–265PubMedCrossRefGoogle Scholar
  61. Kirchheim F, Tinnes S, Haas CA, Stegen M, Wolfart J (2013) Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front Cell Neurosci 7:248PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kobayashi M, Wen X, Buckmaster PS (2003) Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 23:8471–8479PubMedCrossRefGoogle Scholar
  63. Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New YorkGoogle Scholar
  64. Köhling R, Wolfart J (2016) Potassium channels in epilepsy. Cold Spring Harb Perspect Med 6:a022871PubMedPubMedCentralCrossRefGoogle Scholar
  65. Krook-Magnuson E, Armstrong C, Bui A, Lew S, Oijala M, Soltesz I (2015) In vivo evaluation of the dentate gate theory in epilepsy. J Physiol 593:2379–2388PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kullmann DM, Waxman SG (2010) Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol 588:1823–1827PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lawrence JJ, McBain CJ (2003) Interneuron diversity series: containing the detonation--feedforward inhibition in the CA3 hippocampus. Trends Neurosci 26:631–640PubMedCrossRefGoogle Scholar
  68. Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedCrossRefGoogle Scholar
  69. Lisman JE, Talamini LM, Raffone A (2005) Recall of memory sequences by interaction of the dentate and CA3: a revised model of the phase precession. Neural Netw 18:1191–1201PubMedCrossRefGoogle Scholar
  70. Lothman EW, Stringer JL, Bertram EH (1992) The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl 7:301–313PubMedGoogle Scholar
  71. Ly C (2015) Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity. J Comput Neurosci 39:311–327PubMedCrossRefGoogle Scholar
  72. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366PubMedCrossRefGoogle Scholar
  73. Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574PubMedCrossRefGoogle Scholar
  74. Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138PubMedPubMedCentralCrossRefGoogle Scholar
  75. Marin-Burgin A, Mongiat LA, Pardi MB, Schinder AF (2012) Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335:1238–1242PubMedPubMedCentralCrossRefGoogle Scholar
  76. Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470PubMedPubMedCentralCrossRefGoogle Scholar
  77. Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci 262:23–81CrossRefGoogle Scholar
  78. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99CrossRefGoogle Scholar
  79. McNaughton BL, Morris J (1987) Hippocampal synaptic enhancement and information storage within in a distributed memory system. Trends Neurosci 10:408–414CrossRefGoogle Scholar
  80. McNaughton BL, Barnes CA, Andersen P (1981) Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro. J Neurophysiol 46:952–966PubMedCrossRefGoogle Scholar
  81. Mehranfard N, Gholamipour-Badie H, Motamedi F, Janahmadi M, Naderi N (2014) Occurrence of two types of granule cells with different excitability in rat dentate gyrus granule cell layer following pilocarpine-induced status epilepticus. Annu Res Rev Biol 4:3707–3715CrossRefGoogle Scholar
  82. Meier JC, Semtner M, Wolfart J (2015) Homeostasis of neuronal excitability via synaptic and intrinsic inhibitory mechanisms. In: Boison D, Masino SA (eds) Homeostatic control of brain function. Oxford University Press, OxfordGoogle Scholar
  83. Mejias JF, Longtin A (2012) Optimal heterogeneity for coding in spiking neural networks. Phys Rev Lett 108:228102PubMedCrossRefGoogle Scholar
  84. Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157–1168PubMedCrossRefGoogle Scholar
  85. Mittenthal JE (1974) Reliability of pattern separation by the cerebellar mossy fiber--granule cell system. Kybernetik 16:93–101PubMedCrossRefGoogle Scholar
  86. Moczydlowski E, Latorre R (1983) Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82:511–542PubMedCrossRefGoogle Scholar
  87. Mongiat LA, Esposito MS, Lombardi G, Schinder AF (2009) Reliable activation of immature neurons in the adult hippocampus. PLoS One 4:e5320PubMedPubMedCentralCrossRefGoogle Scholar
  88. Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179–6184PubMedPubMedCentralCrossRefGoogle Scholar
  89. Morgan RJ, Santhakumar V, Soltesz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639–658PubMedCrossRefGoogle Scholar
  90. Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 31:69–89PubMedCrossRefGoogle Scholar
  91. Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19:321–337PubMedPubMedCentralCrossRefGoogle Scholar
  92. Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21:1190–1215PubMedCrossRefGoogle Scholar
  93. Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649–1658PubMedCrossRefGoogle Scholar
  94. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Rodriguez Barrera V, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nakazawa K (2017) Dentate mossy cell and pattern separation. Neuron 93:465–467PubMedCrossRefGoogle Scholar
  96. Numann RE, Wadman WJ, Wong RK (1987) Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 393:331–353PubMedPubMedCentralCrossRefGoogle Scholar
  97. O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682PubMedCrossRefGoogle Scholar
  98. Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487PubMedCrossRefGoogle Scholar
  99. Padmanabhan K, Urban NN (2010) Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat Neurosci 13:1276–1282PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA (2007) Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci 27:14012–14022PubMedPubMedCentralCrossRefGoogle Scholar
  101. Peng Z, Hauer B, Mihalek RM, Homanics GE, Sieghart W, Olsen RW, Houser CR (2002) GABA(A) receptor changes in delta subunit-deficient mice: altered expression of alpha4 and gamma2 subunits in the forebrain. J Comp Neurol 446:179–197PubMedCrossRefGoogle Scholar
  102. Potvin O, Dore FY, Goulet S (2009) Lesions of the dorsal subiculum and the dorsal hippocampus impaired pattern separation in a task using distinct and overlapping visual stimuli. Neurobiol Learn Mem 91:287–297PubMedCrossRefGoogle Scholar
  103. Rangel LM, Quinn LK, Chiba AA, Gage FH, Aimone JB (2013) A hypothesis for temporal coding of young and mature granule cells. Front Neurosci 7:75PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rolls ET (2010) A computational theory of episodic memory formation in the hippocampus. Behav Brain Res 215:180–196PubMedCrossRefGoogle Scholar
  105. Sahay A, Scobie KN, Hill AS, OCarroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470PubMedPubMedCentralCrossRefGoogle Scholar
  106. Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437–453PubMedCrossRefGoogle Scholar
  107. Santoro A (2013) Reassessing pattern separation in the dentate gyrus. Front Behav Neurosci 7:96PubMedPubMedCentralCrossRefGoogle Scholar
  108. Scharfman HE, Sollas AL, Berger RE, Goodman JH (2003) Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 90:2536–2547PubMedCrossRefGoogle Scholar
  109. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187PubMedCrossRefGoogle Scholar
  110. Schneider CJ, Bezaire M, Soltesz I (2012) Toward a full-scale computational model of the rat dentate gyrus. Front Neural Circuits 6:83PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schneider CJ, Cuntz H, Soltesz I (2014) Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations. PLoS Comput Biol 10:e1003921PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone ME, Carnevale NT (2013) Introducing the neuroscience gateway. In: CEUR workshop proceedings, CEUR-WSorg, 2013, vol 993Google Scholar
  113. Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227PubMedCrossRefGoogle Scholar
  114. Spencer SS, Spencer DD (1994) Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35:721–727PubMedCrossRefGoogle Scholar
  115. Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179PubMedCrossRefGoogle Scholar
  116. Stegen M, Young CC, Haas CA, Zentner J, Wolfart J (2009) Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon's horn sclerosis. Epilepsia 50:646–653PubMedCrossRefGoogle Scholar
  117. Stegen M, Kirchheim F, Hanuschkin A, Staszewski O, Veh RW, Wolfart J (2012) Adaptive intrinsic plasticity in human dentate gyrus granule cells during temporal lobe epilepsy. Cereb Cortex 22:2087–2101PubMedCrossRefGoogle Scholar
  118. Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 100:14439–14444PubMedPubMedCentralCrossRefGoogle Scholar
  119. Suzuki F, Makiura Y, Guilhem D, Sorensen JC, Onteniente B (1997) Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice. Exp Neurol 145:203–213PubMedCrossRefGoogle Scholar
  120. Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5:1016–1022PubMedCrossRefGoogle Scholar
  121. Tejada J, Roque AC (2014) Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells. EpilepsyBehav: E&B 38:63–70Google Scholar
  122. Tejada J, Arisi GM, Garcia-Cairasco N, Roque AC (2012) Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable. PLoS One 7:e40726PubMedPubMedCentralCrossRefGoogle Scholar
  123. Tejada J, Costa KM, Bertti P, Garcia-Cairasco N (2013) The epilepsies: complex challenges needing complex solutions. Epilepsy Behav: E&B 26:212–228CrossRefGoogle Scholar
  124. Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54:1195–1202PubMedCrossRefGoogle Scholar
  125. Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels. Arch Neurol 66:1225–1232PubMedCrossRefGoogle Scholar
  126. Thomas EA, Reid CA, Petrou S (2010) Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia 51:136–145PubMedCrossRefGoogle Scholar
  127. Torioka T (1978) Pattern separability and the effect of the number of connections in a random neural net with inhibitory connections. Biol Cybern 31:27–35PubMedCrossRefGoogle Scholar
  128. Torioka T, Ikeda N (1988) Pattern separating functioning of two-layered random nerve nets with feedforward inhibitory connections. IEEE Trans Syst Man Cybern 18:358–366CrossRefGoogle Scholar
  129. Torioka T, Ikeda N (1990) Consideration on pattern-separating function in a generalized random-nerve net consisting of two layers. IEEE Trans Syst Man Cybern 20:619–627CrossRefGoogle Scholar
  130. Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650PubMedCrossRefGoogle Scholar
  131. Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–199PubMedCrossRefGoogle Scholar
  132. Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, Abrous DN (2012) Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22:292–298PubMedCrossRefGoogle Scholar
  133. Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276PubMedCrossRefGoogle Scholar
  134. Waxman SG (2001) Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci 2:652–659PubMedCrossRefGoogle Scholar
  135. Winkels R, Jedlicka P, Weise FK, Schultz C, Deller T, Schwarzacher SW (2009) Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo. Hippocampus 19:677–686PubMedCrossRefGoogle Scholar
  136. Wolfart J, Laker D (2015) Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 6:168PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413PubMedCrossRefGoogle Scholar
  138. Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767PubMedCrossRefGoogle Scholar
  139. Yim MY, Aertsen A, Rotter S (2013) Impact of intrinsic biophysical diversity on the activity of spiking neurons. Phys Rev E 87:1–5CrossRefGoogle Scholar
  140. Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297–308PubMedCrossRefGoogle Scholar
  141. Young CC, Stegen M, Bernard R, Muller M, Bischofberger J, Veh RW, Haas CA, Wolfart J (2009) Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 587:4213–4233PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746–1763PubMedPubMedCentralCrossRefGoogle Scholar
  143. Yuen GL, Durand D (1991) Reconstruction of hippocampal granule cell electrophysiology by computer simulation. Neuroscience 41:411–423PubMedCrossRefGoogle Scholar
  144. Zhang N, Wei W, Mody I, Houser CR (2007) Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520–7531PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alexander Hanuschkin
    • 1
  • Man Yi Yim
    • 2
  • Jakob Wolfart
    • 3
    • 4
    Email author
  1. 1.Optophysiology Lab, Department of BiologyUniversity of FreiburgFreiburgGermany
  2. 2.Center for Theoretical and Computational Neuroscience and Department of NeuroscienceThe University of Texas at AustinAustinUSA
  3. 3.Medizinische Hochschule Brandenburg Theodor FontaneNeuruppinGermany
  4. 4.Oscar Langendorff Institute of PhysiologyUniversity of RostockRostockGermany

Personalised recommendations