Morphology of Hippocampal Neurons

  • Imre VidaEmail author
  • Claudius E. Degro
  • Sam A. Booker
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


“Form follows function” states the credo of modern architecture, defining how the shape of an object should be determined by its function. While natural objects, such as neurons, have not taken their shape from design boards, the inquisitive observer can nevertheless gain insights about their function by studying morphological features. This teleological mindset was the main driving force behind the early neuroanatomical investigations, which culminated in the work of Cajal and formed the foundation of modern neuroscience. Neuroanatomical analysis remains an essential part of neuroscience research today and computational neuroscientists particularly benefit from the flow of morphological data, with increasing detail and resolution.

Further Reading

  1. Acsády L, Arabadzisz D, Freund TF (1996a) Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neurosci 73:299–315CrossRefGoogle Scholar
  2. Acsády L, Görcs TJ, Freund TF (1996b) Different populations of vasoactive intestinal polypeptide- immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neurosci 73:317–334CrossRefGoogle Scholar
  3. Acsády L, Kamondi A, Sík A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403PubMedCrossRefGoogle Scholar
  4. Acsády L, Katona I, Martınez-Guijarro FJ, Buzsáki G, Freund TF (2000) Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus. J Neurosci 20:6907–6919PubMedCrossRefGoogle Scholar
  5. Ali AB (2007) Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. J Neurophysiol 98:861–869PubMedCrossRefGoogle Scholar
  6. Ali AB, Thomson AM (1998) Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J Physiol 507:185–199PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914PubMedCrossRefGoogle Scholar
  8. Ambros-Ingerson J, Holmes WR (2005) Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus 15:302–315PubMedCrossRefGoogle Scholar
  9. Armstrong C, Szabadics J, Tamás G, Soltész I (2011) Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal–hippocampal interplay. J Comp Neurol 519:1476–1491PubMedPubMedCentralCrossRefGoogle Scholar
  10. Armstrong C, Krook-Magnuson E, Soltész I (2012) Neurogliaform and ivy cells: a major family of nNOS expressing GABAergic neurons. Front Neural Circuits 6(May):1–10Google Scholar
  11. Bannister NJ, Larkman AU (1995a) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns. J Comp Neurol 360:150–160PubMedCrossRefGoogle Scholar
  12. Bannister NJ, Larkman AU (1995b) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J Comp Neurol 360:161–171PubMedCrossRefGoogle Scholar
  13. Bartos M, Vida I, Frotscher M, Geiger JRP, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687–2698PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JRP, Jonas P (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99:13222–13227PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 17:2094–2107PubMedCrossRefGoogle Scholar
  16. Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal sub- populations as detected by immunogold reaction. Neuron 11:771–787PubMedCrossRefGoogle Scholar
  17. Beining M, Jungenitz T, Radic T, Deller T, Cuntz H, Jedlicka P, Schwarzacher SW (2017) Adult-born dentate granule cells show a critical period of dendritic reorganization and are distinct from developmentally born cells. Brain Struct Funct 222:1427–1446PubMedCrossRefGoogle Scholar
  18. Bezaire MJ, Soltész I (2013) Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23:751–785PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blackstad TW (1956) Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417–537PubMedCrossRefGoogle Scholar
  20. Blackstad TW, Kjaerheim A (1961) Special axo-dendritic synapses in the hippocampal cortex: electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol 117:133–159PubMedCrossRefGoogle Scholar
  21. Blasco-Ibáñez JM, Freund TF (1995) Synaptic input of horizontal interneurons in stratum oriens of the hippocampal CA1 subfield: Structural basis of feed-back activation. Eur J Neurosci 7:2170–2180PubMedPubMedCentralCrossRefGoogle Scholar
  22. Blasco-Ibáñez JM, Martínez-Guijarro F-J, Freund TF (2000) Recurrent mossy fibers preferentially innervate parvalbumin-immunoreactive interneurons in the granule cell layer of the rat dentate gyrus. Neuroreport 11:3219–3225PubMedCrossRefGoogle Scholar
  23. Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N (2016) Structured dendritic inhibition supports branch-selective integration in CA1 pyramidal cells. Neuron 89:1016–1030PubMedCrossRefGoogle Scholar
  24. Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N (2018) Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nature Neurosci 19:1CrossRefGoogle Scholar
  25. Boldogkői Z, Bálint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, Roska B (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130PubMedCrossRefGoogle Scholar
  26. Booker SA, Gross A, Althof D, Shigemoto R, Bettler B, Frotscher M, Hearing M, Wickman K, Watanabe M, Kulik Á, Vida I (2013) Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons. J Neurosci 33:7961–7974PubMedPubMedCentralCrossRefGoogle Scholar
  27. Booker SA, Althof D, Degro CE, Watanabe M, Kulik Á, Vida I (2017a) Differential surface density and modulatory effects of presynaptic GABAB receptors in hippocampal cholecystokinin and parvalbumin basket cells. Brain Struct Funct 222:3677–3690PubMedPubMedCentralCrossRefGoogle Scholar
  28. Booker SA, Althof D, Gross A, Loreth D, Müller J, Unger A, Fakler B, Varro A, Watanabe M, Gassmann M, Bettler B, Shigemoto R, Vida I, Kulik Á (2017b) KCTD12 auxiliary proteins modulate kinetics of GABAB receptor-mediated inhibition in cholecystokinin-containing interneurons. Cerebral Cortex (New York, N.Y.: 1991) 27:2318–2334Google Scholar
  29. Booker SA, Loreth D, Gee AL, Watanabe M, Kind PC, Wyllie DJA, Kulik Á, Vida I (2018) Postsynaptic GABABRs inhibit L-type calcium channels and abolish long-term potentiation in hippocampal somatostatin interneurons. Cell Rep 22:36–43PubMedPubMedCentralCrossRefGoogle Scholar
  30. Botcher NA, Falck JE, Thomson AM, Mercer A (2014) Distribution of interneurons in the CA2 region of the rat hippocampus. Front Neuroanatomy 8Google Scholar
  31. Buckmaster PS, Strowbridge BW, Schwartzkroin PA (1993) A comparison of rat hippocampal mossy cells and CA3c pyramidal cells. J Neurophysiol 70:1281–1299PubMedCrossRefGoogle Scholar
  32. Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271–292PubMedCrossRefGoogle Scholar
  33. Buckmaster PS (2012) Mossy cell dendritic structure quantified and compared with other hippocampal neurons labeled in rats in vivo. Epilepsia 53(Suppl. 1):9–17PubMedPubMedCentralCrossRefGoogle Scholar
  34. Buhl EH, Cobb SR, Halasy K, Somogyi P (1995) Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur J Neurosci 7:1989–2004PubMedPubMedCentralCrossRefGoogle Scholar
  35. Buhl EH, Halasy K, Somogyi P (1994a) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823–828PubMedPubMedCentralCrossRefGoogle Scholar
  36. Buhl EH, Han ZS, Lőrinczi Z, Stezhka VV, Karnup SV, Somogyi P (1994b) Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol 71:1289–1307PubMedCrossRefGoogle Scholar
  37. Buhl EH, Szilágyi T, Halasy K, Somogyi P (1996) Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro. Hippocampus 6:294–305PubMedCrossRefGoogle Scholar
  38. Bullis JB, Jones TD, Poolos NP (2007) Reversed somatodendritic Ih gradient in a class of rat hippocampal neurons with pyramidal morphology. J Physiol 579:431–443PubMedCrossRefGoogle Scholar
  39. Cajal SR (1968) The structure of the Ammon’s horn. Charles C. Thomas, SpringfieldGoogle Scholar
  40. Cannon RC, Wheal HV, Turner DA (1999) Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J Comp Neurol 413:619–633PubMedCrossRefGoogle Scholar
  41. Carnevale NT, Tsai KY, Claiborne BJ, Brown TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J Neurophysiol 78:703–720PubMedCrossRefGoogle Scholar
  42. Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N (2016a) Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89:351–368PubMedCrossRefGoogle Scholar
  43. Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N (2016b) Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5Google Scholar
  44. Ceranik K, Bender R, Geiger JR, Monyer H, Jonas P, Frotscher M, Lübke J (1997) A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J Neurosci 17:5380–5394PubMedCrossRefGoogle Scholar
  45. Chamberland S, Salesse C, Topolnik D, Topolnik L (2010) Synapse-specific inhibitory control of hippocampal feedback inhibitory circuit. Front Cell Neurosci 4 Available at:
  46. Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182PubMedCrossRefGoogle Scholar
  48. Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515:743–756PubMedPubMedCentralCrossRefGoogle Scholar
  49. Christie BR, Franks KM, Seamans JK, Saga K, Sejnowski TJ (2000) Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells. Hippocampus 10:673–683PubMedCrossRefGoogle Scholar
  50. Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246:435–458PubMedCrossRefGoogle Scholar
  51. Claiborne BJ, Amaral DG, Cowan WM (1990) Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. J Comp Neurol 302:206–219PubMedCrossRefGoogle Scholar
  52. Cobb SR, Halasy K, Vida I, Nyiri G, Tamás G, Buhl EH, Somogyi P (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neurosci 79:629–648CrossRefGoogle Scholar
  53. Cope DW, Maccaferri G, Márton LF, Roberts JD, Cobden PM, Somogyi P (2002) Cholecystokinin- immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neurosci 109:63–80CrossRefGoogle Scholar
  54. Csicsvari J, Hirase H, Czurkó A, Buzsáki G (1998) Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: An ensemble approach in the behaving rat. Neuron 21:179–189PubMedCrossRefGoogle Scholar
  55. Degro CE, Kulik A, Booker SA, Vida I (2015) Compartmental distribution of gabab receptor-mediated currents along the somatodendritic axis of hippocampal principal cells. Front Synaptic Neurosci 7(MAR):1–15Google Scholar
  56. Desmond NL, Levy WB (1982) A quantitative anatomical study of the granule cell dendritic fields of the rat dentate gyrus using a novel probabilistic method. J Comp Neurol 212:131–145PubMedCrossRefGoogle Scholar
  57. Deuchars J, Thomson AM (1996) CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74:1009–1018PubMedGoogle Scholar
  58. Dieni CV, Panichi R, Aimone JB, Kuo CT, Wadiche JI, Overstreet-Wadiche L (2016) Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun 7:11313PubMedPubMedCentralCrossRefGoogle Scholar
  59. Doischer D, Hosp JA, Yanagawa Y, Obata K, Jonas P, Vida I, Bartos M (2008) Postnatal differentiation of basket cells from slow to fast signaling devices. J Neurosci 28:12956–12968PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dong H-W, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci 106:11794–11799PubMedCrossRefGoogle Scholar
  61. Dougherty KA, Islam T, Johnston D (2012) Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J Physiol 590:5707–5722PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dougherty KA, Nicholson DA, Diaz L, Buss EW, Neuman KM, Chetkovich DM, Johnston D (2013) Differential expression of HCN subunits alters voltage-dependent gating of h-channels in CA1 pyramidal neurons from dorsal and ventral hippocampus. J Neurophysiol 109:1940–1953PubMedPubMedCentralCrossRefGoogle Scholar
  63. Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, Hen R (2016) Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 26:763–778PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dumas TC, Powers EC, Tarapore PE, Sapolsky RM (2004) Overexpression of calbindin D28K in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal-dependent memory. Hippocampus 14:701–709PubMedCrossRefGoogle Scholar
  65. Elfant D, Pál BZ, Emptage N, Capogna M (2008) Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells. Eur J Neurosci 27:104–113PubMedPubMedCentralCrossRefGoogle Scholar
  66. Emri Z, Antal K, Gulyás AI, Megías M, Freund TF (2001) Electrotonic profile and passive propagation of synaptic potentials in three subpopulations of hippocampal CA1 interneurons. Neuroscience 104:1013–1026PubMedCrossRefGoogle Scholar
  67. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51PubMedCrossRefGoogle Scholar
  68. Ferraguti F, Cobden P, Pollard M, Cope D, Shigemoto R, Watanabe M et al (2004) Immunolocalization of metabotropic glutamate receptor 1alpha (mGluR1alpha) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus 14:193–215PubMedCrossRefGoogle Scholar
  69. Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JD, Szucs P, Kinoshita A, Shigemoto R, Somogyi P, Dalezios Y (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520–10536PubMedCrossRefGoogle Scholar
  70. Földy C, Lee SH, Morgan RJ, Soltész I (2010) Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nature Neuroscience 13:1047–1049PubMedPubMedCentralCrossRefGoogle Scholar
  71. Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267PubMedCrossRefGoogle Scholar
  72. Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470PubMedPubMedCentralCrossRefGoogle Scholar
  73. Frotscher M, Seress L, Schwerdtfeger WK, Buhl E (1991) The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J Comp Neurol 312:145–163PubMedCrossRefGoogle Scholar
  74. Frotscher M, Soriano E, Misgeld U (1994) Divergence of hippocampal mossy fibers. Synapse 16:148–160PubMedCrossRefGoogle Scholar
  75. Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thomson A, Somogyi P, Klausberger T (2008) Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57:917–929PubMedPubMedCentralCrossRefGoogle Scholar
  76. Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, Studer M, Morales M, Somogyi P (2010) Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J Neurosci 30:1595–1609PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fukuda T, Kosaka T (2000) Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J Neurosci 20:1519–1528PubMedCrossRefGoogle Scholar
  78. Fukuda T, Kosaka T (2003) Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neurosci 120:5–20CrossRefGoogle Scholar
  79. Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y, Szabo G, Harkany T (2016) Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34:175–183PubMedCrossRefGoogle Scholar
  80. Ganter P, Szücs P, Paulsen O, Somogyi P (2004) Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus 14:232–243PubMedCrossRefGoogle Scholar
  81. Geiger JR, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor- mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023PubMedCrossRefGoogle Scholar
  82. Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ (2005a) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A 102:13295–13300PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gloveli T, Dugladze T, Saha S, Monyer H, Heinemann U, Traub RD, Whittington MA, Buhl EH (2005b) Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol 562:131–147PubMedCrossRefGoogle Scholar
  84. Goldin M, Epsztein J, Jorquera I, Represa A, Ben-Ari Y, Crépel V, Cossart R (2007) Synaptic Kainate Receptors Tune Oriens-Lacunosum Moleculare Interneurons to Operate at Theta Frequency. J Neurosci 27:60–9572CrossRefGoogle Scholar
  85. Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gonzales RB, DeLeon Galvan CJ, Rangel YM, Claiborne BJ (2001) Distribution of thorny excrescences on CA3 pyramidal neurons in the rat hippocampus. J Comp Neurol 430:357–368PubMedCrossRefGoogle Scholar
  87. Graves AR, Moore SJ, Bloss EB, Mensh BD, Kath WL, Spruston N (2012) Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors. Neuron 76:776–789PubMedPubMedCentralCrossRefGoogle Scholar
  88. Guetg N, Seddik R, Vigot R, Turecek R, Gassmann M, Vogt KE, Bräuner-Osborne H, Shigemoto R, Kretz O, Frotscher M, Kulik A, Bettler B (2009) The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses. J Neurosci 29:1414–1423PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gulyás AI, Freund TF (1996) Pyramidal cell dendrites are the primary targets of calbindin D28k- immunoreactive interneurons in the hippocampus. Hippocampus 6:525–534PubMedCrossRefGoogle Scholar
  90. Gulyás AI, Hájos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411PubMedCrossRefGoogle Scholar
  91. Gulyás AI, Megías M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19:10082–10097PubMedCrossRefGoogle Scholar
  92. Gulyás AI, Miles R, Hájos N, Freund TF (1993a) Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur J Neurosci 5:1729–1751PubMedPubMedCentralCrossRefGoogle Scholar
  93. Gulyás AI, Miles R, Sík A, Tóth K, Tamamaki N, Freund TF (1993b) Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366:683–687PubMedCrossRefGoogle Scholar
  94. Gulyás AI, Tóth K, McBain CJ, Freund TF (1998) Stratum radiatum giant cells: a type of principal cell in the rat hippocampus. Eur J Neurosci 10:3813–3822PubMedCrossRefGoogle Scholar
  95. Gulyás AI, Hájos N, Katona I, Freund TF (2003) Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. Eur J Neurosci 17:1861–1872PubMedCrossRefGoogle Scholar
  96. Hájos N, Acsády L, Freund TF (1996) Target selectivity and neurochemical characteristics of VIP- immunoreactive interneurons in the rat dentate gyrus. Eur J Neurosci 8:1415–1431PubMedCrossRefGoogle Scholar
  97. Hájos N, Mody I (1997) Synaptic communication among hippocampal interneurons: Properties of spontaneous IPSCs in morphologically identified cells. J Neurosci 17:8427–8442PubMedCrossRefGoogle Scholar
  98. Hájos N, Papp EC, Acsády L, Levey AI, Freund TF (1998) Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 82:355–376PubMedCrossRefGoogle Scholar
  99. Halasy K, Buhl EH, Lőrinczi Z, Tamás G, Somogyi P (1996) Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus 6:306–329PubMedCrossRefGoogle Scholar
  100. Halasy K, Somogyi P (1993a) Distribution of GABAergic synapses and their targets in the dentate gyrus of rat: a quantitative immunoelectron microscopic analysis. J Hirnforsch 34:299–308PubMedGoogle Scholar
  101. Halasy K, Somogyi P (1993b) Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:411–429PubMedCrossRefGoogle Scholar
  102. Hama K, Arii T, Kosaka T (1989) Three-dimensional morphometrical study of dendritic spines of the granule cell in the rat dentate gyrus with HVEM stereo images. J Electron Microsc Tech 12:80–87PubMedCrossRefGoogle Scholar
  103. Han ZS, Buhl EH, Lőrinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:395–410PubMedCrossRefGoogle Scholar
  104. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705PubMedCrossRefGoogle Scholar
  105. Henze DA, Cameron WE, Barrionuevo G (1996) Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. J Comp Neurol 369:331–344PubMedCrossRefGoogle Scholar
  106. Homma R, Baker BJ, Jin L, Garaschuk O, Konnerth A, Cohen LB, Bleau CX, Canepari M, Djurisic M, Zecevic D (2009) Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. Methods Mol Biol 489:43–79PubMedCrossRefGoogle Scholar
  107. Hooper A, Maguire J (2016) Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus 26:41–53PubMedCrossRefGoogle Scholar
  108. Hormuzdi SG, Pais I, LeBeau FE, Towers SK, Rozov A, Buhl EH, Whittington MA, Monyer H (2001) Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36- deficient mice. Neuron 31:487–495PubMedCrossRefGoogle Scholar
  109. Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I, Jonas P et al (2005) Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24:189–203CrossRefGoogle Scholar
  110. Hosseini-Sharifabad M, Nyengaard JR (2007) Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus. J Neurosci Methods 162:206–214PubMedCrossRefGoogle Scholar
  111. Houser CR (2007) Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res 163:217–232PubMedCrossRefGoogle Scholar
  112. Igarashi KM, Ito HT, Moser EI, Moser MB (2014) Functional diversity along the transverse axis of hippocampal area CA1. FEBS Lett 588:2470–2476PubMedCrossRefGoogle Scholar
  113. Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17–45PubMedCrossRefGoogle Scholar
  114. Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623PubMedCrossRefGoogle Scholar
  115. Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 7:14PubMedPubMedCentralCrossRefGoogle Scholar
  116. Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, Bushong EA, Henze D, Buzsáki G, Somogyi P (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27:8790–8804PubMedPubMedCentralCrossRefGoogle Scholar
  117. Jinno S, Kosaka T (2006) Cellular architecture of the mouse hippocampus: a quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 56:229–245PubMedCrossRefPubMedCentralGoogle Scholar
  118. Jouvenceau A, Potier B, Battini R, Ferrari S, Dutar P, Billard JM (1999) Glutamatergic synaptic responses and long-term potentiation are impaired in the CA1 hippocampal area of calbindin D(28K)-deficient mice. Synapse 33:172–180PubMedCrossRefGoogle Scholar
  119. Karson MA, Tang AH, Milner TA, Alger BE (2009) Synaptic cross talk between perisomatic- targeting interneuron classes expressing cholecystokinin and parvalbumin in hippocampus. J Neurosci 29:4140–4154PubMedPubMedCentralCrossRefGoogle Scholar
  120. Katona I, Acsády L, Freund TF (1999a) Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88:37–55PubMedPubMedCentralCrossRefGoogle Scholar
  121. Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999b) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558PubMedCrossRefPubMedCentralGoogle Scholar
  122. Katona L, Micklem B, Borhegyi Z, Swiejkowski DA, Valenti O, Viney TJ, Kotzadimitriou D, Klausberger T, Somogyi P (2017) Behavior-dependent activity patterns of GABAergic long-range projecting neurons in the rat hippocampus. Hippocampus 27:359–377PubMedPubMedCentralCrossRefGoogle Scholar
  123. Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 72:347–362PubMedGoogle Scholar
  124. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452PubMedCrossRefGoogle Scholar
  125. Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505:318–326PubMedPubMedCentralCrossRefGoogle Scholar
  126. Klausberger T, Magill PJ, Márton LF, Roberts JD, Cobden PM, Buzsáki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMedPubMedCentralCrossRefGoogle Scholar
  127. Klausberger T, Márton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7:41–47PubMedPubMedCentralCrossRefGoogle Scholar
  128. Klausberger T, Marton LF, O’Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782–9793PubMedPubMedCentralCrossRefGoogle Scholar
  129. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57PubMedPubMedCentralCrossRefGoogle Scholar
  130. Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30:947–957PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J, Frank D, Kajikawa K, Mise N, Obata Y, Wickersham IR, Tonegawa S (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 17:269–279PubMedCrossRefGoogle Scholar
  132. Kosaka T (1980) The axon initial segment as a synaptic site: Ultrastructure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region). J Neurocytol 9:861–882PubMedCrossRefPubMedCentralGoogle Scholar
  133. Kosaka T, Katsumaru H, Hama K, Wu JY, Heizmann CW (1987) GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419:119–130PubMedCrossRefPubMedCentralGoogle Scholar
  134. Kosaka T, Wu JY, Benoit R (1988) GABAergic neurons containing somatostatin-like immunore- activity in the rat hippocampus and dentate gyrus. Exp Brain Res 71:388–398PubMedPubMedCentralGoogle Scholar
  135. Kowalski J, Geuting M, Paul S, Dieni S, Laurens J, Zhao S, Drakew A, Haas CA, Frotscher M, Vida I (2010) Proper layering is important for precisely timed activation of hippocampal mossy cells. Cereb Cortex 20:2043–2054PubMedCrossRefPubMedCentralGoogle Scholar
  136. Kraushaar U, Jonas P (2000) Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 20:5594–5607PubMedPubMedCentralCrossRefGoogle Scholar
  137. Krook-Magnuson E, Luu L, Lee S-H, Varga C, Soltész I (2011) Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation. J Neurosci 31:14861–14870PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7:1979–1993PubMedCrossRefGoogle Scholar
  139. Larimer P, Strowbridge BW (2008) Non-random local circuits in the dentate gyrus. J Neurosci 28:12212–12223PubMedPubMedCentralCrossRefGoogle Scholar
  140. Leão RN, Mikulovic S, Leão KE, Munguba H, Gezelius H, Enjin A, Patra K, Eriksson A, Loew LM, Tort ABL, Kullander K (2012) OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci 15:1524–1530PubMedPubMedCentralCrossRefGoogle Scholar
  141. Lee AK, Epsztein J, Brecht M (2009) Head-anchored whole-cell recordings in freely moving rats. Nat Protoc 4:385–392PubMedCrossRefGoogle Scholar
  142. Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP, Cowan DP, Ramineni S, Yates CK, Feng Y, Smith Y, Sweatt JD, Weinshenker D, Ressler KJ, Dudek SM, Hepler JR (2010) RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci U S A 107:16994–16998PubMedPubMedCentralCrossRefGoogle Scholar
  143. Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltész I (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129–1144PubMedPubMedCentralCrossRefGoogle Scholar
  144. Lein ES, Callaway EM, Albright TD, Gage FH (2005) Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J Comp Neurol 485:1–10PubMedCrossRefGoogle Scholar
  145. Li XG, Somogyi P, Tepper JM, Buzsáki G (1992) Axonal and dendritic arborization of an intra-cellularly labeled chandelier cell in the CA1 region of rat hippocampus. Exp Brain Res 90:519–525PubMedCrossRefGoogle Scholar
  146. Li XG, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal CA3 network: an in vivo intra-cellular labeling study. J Comp Neurol 339:181–208PubMedCrossRefGoogle Scholar
  147. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62PubMedCrossRefPubMedCentralGoogle Scholar
  148. Lorente de Nó R (1934) Studies on the structure of the cerebral cortex II: Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177Google Scholar
  149. Losonczy A, Biró AA, Nusser Z (2004) Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. Proc Natl Acad Sci U S A 101:1362–1367PubMedPubMedCentralCrossRefGoogle Scholar
  150. Luuk H, Koks S, Plaas M, Hannibal J, Rehfeld JF, Vasar E (2008) Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome. J Comp Neurol 509:642–660PubMedCrossRefPubMedCentralGoogle Scholar
  151. Lübke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518–1534PubMedCrossRefGoogle Scholar
  152. Maccaferri G, Dingledine R (2002) Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons. J Neurosci 22:5462–5472PubMedCrossRefPubMedCentralGoogle Scholar
  153. Maccaferri G, Lacaille JC (2003) Interneuron diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler. Trends Neurosci 26:564–571PubMedCrossRefPubMedCentralGoogle Scholar
  154. Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524:91–116PubMedPubMedCentralCrossRefGoogle Scholar
  155. Maglóczky Z, Acsády L, Freund TF (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4:322–334PubMedCrossRefGoogle Scholar
  156. Major G, Evans JD, Jack JJB (1993) Solutions for transients in arbitrarily branching cables: 1. Voltage recording with a somatic shunt. Biophys J 65:423–449PubMedPubMedCentralCrossRefGoogle Scholar
  157. Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613–4638PubMedCrossRefGoogle Scholar
  158. Masurkar AV, Srinivas KV, Brann DH, Warren R, Lowes DC, Siegelbaum SA (2017) Medial and lateral entorhinal cortex differentially excite deep versus superficial CA1 pyramidal neurons. Cell Rep 18:148–160PubMedPubMedCentralCrossRefGoogle Scholar
  159. Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287:295–300PubMedCrossRefGoogle Scholar
  160. Mátyás F, Freund TF, Gulyás AI (2004) Convergence of excitatory and inhibitory inputs onto CCK- containing basket cells in the CA1 area of the rat hippocampus. Eur J Neurosci 19:1243–1256PubMedCrossRefPubMedCentralGoogle Scholar
  161. McBain CJ, DiChiara TJ, Kauer JA (1994) Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J Neurosci 14:4433–4445PubMedCrossRefGoogle Scholar
  162. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23PubMedPubMedCentralCrossRefGoogle Scholar
  163. Megías M, Emri Z, Freund TF, Gulyás AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neurosci 102:527–540CrossRefGoogle Scholar
  164. Melzer S, Michael M, Caputi A, Eliava M, Fuchs EC, Whittington MA, Monyer H (2012) Long-range-projecting gabaergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science 335:1506–1510PubMedCrossRefGoogle Scholar
  165. Mercer A, Trigg HL, Thomson AM (2007) Characterization of neurons in the CA2 subfield of the adult rat hippocampus. J Neurosci 27:7329–7338PubMedCrossRefGoogle Scholar
  166. Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin- positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064PubMedCrossRefGoogle Scholar
  167. Miettinen R, Hajszan T, Riedel A, Szigeti-Buck K, Leranth C (2012) Estimation of the total number of hippocampal CA1 pyramidal neurons: New methodology applied to helpless rats. J Neurosci Methods 205:130–138PubMedCrossRefGoogle Scholar
  168. Mikulovic S, Restrepo CE, Hilscher MM, Kullander K, Leão RN (2015) Novel markers for OLM interneurons in the hippocampus. Front Cell Neurosci 9:201PubMedPubMedCentralCrossRefGoogle Scholar
  169. Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823PubMedPubMedCentralCrossRefGoogle Scholar
  170. Milior G, Di Castro MA, Sciarria LP, Garofalo S, Branchi I, Ragozzino D, Limatola C, Maggi L (2016) Electrophysiological properties of CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. Scientific Rep 6:38242CrossRefGoogle Scholar
  171. Min MY, Melyan Z, Kullmann DM (1999) Synaptically released glutamate reduces gamma- aminobutyric acid GABAergic inhibition in the hippocampus via kainite receptors. Proc Natl Acad Sci U S A 96:9932–9937PubMedPubMedCentralCrossRefGoogle Scholar
  172. Mizuseki K, Diba K, Pastalkova E, Buzsáki G (2011) Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nat Neurosci 14:1174–1181PubMedPubMedCentralCrossRefGoogle Scholar
  173. Monyer H, Markram H (2004) Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27:90–97PubMedCrossRefPubMedCentralGoogle Scholar
  174. Mott DD, Turner DA, Okazaki MM, Lewis DV (1997) Interneurons of the dentate-hilus border of the rat dentate gyrus: morphological and electrophysiological heterogeneity. J Neurosci 17:3990–4005PubMedCrossRefPubMedCentralGoogle Scholar
  175. Nörenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. PNAS 107:894–899PubMedCrossRefPubMedCentralGoogle Scholar
  176. Nunzi MG, Gorio A, Milan F, Freund TF, Somogyi P, Smith AD (1985) Cholecystokinin- immunoreactive cells form symmetrical synaptic contacts with pyramidal and nonpyramidal neurons in the hippocampus. J Comp Neurol 237:485–505PubMedCrossRefPubMedCentralGoogle Scholar
  177. Oláh S, Füle M, Komlósi G, Varga C, Báldi R, Barzó P, Tamás G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281PubMedPubMedCentralCrossRefGoogle Scholar
  178. Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368PubMedCrossRefPubMedCentralGoogle Scholar
  179. Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854–1863PubMedCrossRefPubMedCentralGoogle Scholar
  180. Pawelzik H, Hughes DI, Thomson AM (2002) Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367PubMedCrossRefGoogle Scholar
  181. Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ (2017) Hippocampal GABAergic inhibitory interneurons. Physiol Rev 97:1619–1747PubMedPubMedCentralCrossRefGoogle Scholar
  182. Petilla Interneuron Nomenclature Group, Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvárday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568CrossRefGoogle Scholar
  183. Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R, Capogna M (2005) Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci 25:6775–6786CrossRefGoogle Scholar
  184. Price CJ, Scott R, Rusakov DA, Capogna M (2008) GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells. J Neurosci 28:6974–6982PubMedPubMedCentralCrossRefGoogle Scholar
  185. Pyapali GK, Sík A, Penttonen M, Buzsáki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro. J Comp Neurol 391:335–352PubMedCrossRefGoogle Scholar
  186. Ratzliff AH, Santhakumar V, Howard A, Soltész I (2002) Mossy cells in epilepsy: Rigor mortis or vigor mortis? Trends Neurosci 25:140–144PubMedCrossRefGoogle Scholar
  187. Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14:835–857PubMedCrossRefGoogle Scholar
  188. Rollenhagen A, Sätzler K, Rodŕıguez EP, Jonas P, Frotscher M, Lübke JH (2007) Structural determinants of transmission at large hippocampal mossy fiber synapses. J Neurosci 27:10434–10444PubMedCrossRefGoogle Scholar
  189. Rózsa B, Zelles T, Vizi ES, Lendvai B (2004) Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J Neurosci 24:661–670PubMedCrossRefGoogle Scholar
  190. Ruchi M, Ann DK, Komal P, Connor B, Daniel J (2016) Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26:341–361CrossRefGoogle Scholar
  191. Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660–1673PubMedCrossRefGoogle Scholar
  192. Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72:2167–2180PubMedCrossRefGoogle Scholar
  193. Scharfman HE (1995) Electrophysiological diversity of pyramidal-shaped neurons at the granule cell layer/hilus border of the rat dentate gyrus recorded in vitro. Hippocampus 5:287–305PubMedPubMedCentralCrossRefGoogle Scholar
  194. Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637PubMedPubMedCentralCrossRefGoogle Scholar
  195. Scharfman HE (2016) The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci 17:562–575PubMedPubMedCentralCrossRefGoogle Scholar
  196. Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441PubMedCrossRefGoogle Scholar
  197. Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus. A light microscopic and Golgi study. J Anat 133:181–195PubMedPubMedCentralGoogle Scholar
  198. Seri B, García-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378PubMedCrossRefGoogle Scholar
  199. Sík A, Penttonen M, Buzsáki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9:573–588PubMedCrossRefGoogle Scholar
  200. Sík A, Penttonen M, Ylinen A, Buzsáki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15:6651–6665PubMedCrossRefGoogle Scholar
  201. Sík A, Tamamaki N, Freund TF (1993) Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. Eur J Neurosci 5:1719–1728PubMedCrossRefGoogle Scholar
  202. Sík A, Ylinen A, Penttonen M, Buzsáki G (1994) Inhibitory CA1–CA3-hilar region feedback in the hippocampus. Science. 265:1722–1724PubMedCrossRefGoogle Scholar
  203. Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP (2011) Hippocampal pyramidal cells: The reemergence of cortical lamination. Brain Struct Funct 216:301–317PubMedPubMedCentralCrossRefGoogle Scholar
  204. Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280:183–196PubMedCrossRefGoogle Scholar
  205. Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M (2003) “Dormant basket cell” hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J Comp Neurol 459:44–76PubMedPubMedCentralCrossRefGoogle Scholar
  206. Soltész I, Bourassa J, Descheˆnes M (1993) The behavior of mossy cells of the rat dentate gyrus during theta oscillations in vivo. Neurosci 57:555–564CrossRefGoogle Scholar
  207. Somogyi P, Dalezios Y, Lujan R, Roberts JD, Watanabe M, Shigemoto R (2003) High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur J Neurosci 17:2503–2520PubMedCrossRefGoogle Scholar
  208. Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P (2004) GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 19:552–569PubMedCrossRefGoogle Scholar
  209. Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562:9–26PubMedPubMedCentralCrossRefGoogle Scholar
  210. Somogyi P, Nunzi MG, Gorio A, Smith AD (1983) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259:137–142PubMedCrossRefGoogle Scholar
  211. Srinivas KV, Buss EW, Sun Q, Santoro B, Takahashi H, Nicholson DA, Siegelbaum SA (2017) The dendrites of CA2 and CA1 pyramidal neurons differentially regulate information flow in the cortico-hippocampal circuit. J Neurosci 37(12):3276–3293PubMedPubMedCentralCrossRefGoogle Scholar
  212. Stafford MM, Brown MN, Mishra P, Stanwood GD, Mathews GC (2009) Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus. Hippocampus 20:134–144Google Scholar
  213. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72PubMedCrossRefGoogle Scholar
  214. Szabadics J, Tamás G, Soltész I (2007) Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast. Proc Natl Acad Sci U S A 104:14831–14836PubMedPubMedCentralCrossRefGoogle Scholar
  215. Takács VT, Klausberger T, Somogyi P, Freund TF, Gulyás AI (2012) Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons. Hippocampus 22:1379–1391PubMedCrossRefGoogle Scholar
  216. Tamamaki N, Abe K, Nojyo Y (1988) Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 452:255–272PubMedCrossRefGoogle Scholar
  217. Tamás G, Lőrincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905PubMedPubMedCentralCrossRefGoogle Scholar
  218. Thome C, Kelly T, Yanez A, Schultz C, Engelhardt M, Cambridge SB, Egorov AV (2014) Axon-carrying dendrites convey privileged synaptic input in hippocampal neurons. Neuron 83:1418–1430PubMedCrossRefGoogle Scholar
  219. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES (2008) Genomic anatomy of the hippocampus. Neuron 60:1010–1021PubMedCrossRefGoogle Scholar
  220. Thurbon D, Field A, Redman S (1994) Electrotonic profiles of interneurons in stratum pyramidale of the CA1 region of rat hippocampus. J Neurophysiol 71:1948–1958PubMedCrossRefGoogle Scholar
  221. Tóth K, McBain CJ (1998) Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat Neurosci 1:572–578PubMedCrossRefGoogle Scholar
  222. Tricoire L, Pelkey KA, Daw MI, Sousa VH, Miyoshi G, Jeffries B, McBain CJ (2010) Common origins of hippocampal ivy and nitric oxide synthase expressing neurogliaform cells. J Neurosci 30:2165–2176PubMedPubMedCentralCrossRefGoogle Scholar
  223. Traub RD, Jefferys JG, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J Physiol 481:79–95PubMedPubMedCentralCrossRefGoogle Scholar
  224. Turner DA, Li XG, Pyapali GK, Ylinen A, Buzsáki G (1995) Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. J Comp Neurol 356:580–594PubMedCrossRefGoogle Scholar
  225. Tyan L, Chamberland S, Magnin E, Camire O, Francavilla R, David LS, Topolnik L (2014) Dendritic inhibition provided by interneuron-specific cells controls the firing rate and timing of the hippocampal feedback inhibitory circuitry. J Neurosci 34:4534–4547PubMedPubMedCentralCrossRefGoogle Scholar
  226. Urban-Ciecko J, Fanselow EE, Barth AL (2015) Neocortical somatostatin neurons reversibly silence excitatory transmission via GABAb receptors. Curr Biol 25:722–731PubMedPubMedCentralCrossRefGoogle Scholar
  227. Yan X-X, Toth Z, Schultz L, Ribak CE, Baram TZ (1998) Corticotropin-Releasing Hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8:231–243PubMedPubMedCentralCrossRefGoogle Scholar
  228. Vida I, Frotscher M (2000) A hippocampal interneuron associated with the mossy fiber system. Proc Natl Acad Sci U S A 97:1275–1280PubMedPubMedCentralCrossRefGoogle Scholar
  229. Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH (1998) Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 506:755–773PubMedPubMedCentralCrossRefGoogle Scholar
  230. Vivar C, Potter MC, Choi J, Lee JY, Stringer TP, Callaway EM, Gage FH, Suh H, Van Praag H (2012) Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 3Google Scholar
  231. Vogt KE, Nicoll RA (1999) Glutamate and gamma-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc Natl Acad Sci U S A 96:1118–1122PubMedPubMedCentralCrossRefGoogle Scholar
  232. Vuksic M, Del Turco D, Bas Orth C, Burbach GJ, Feng G, Müller CM, Schwarzacher SW, Deller T (2008) 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse. Hippocampus 18:364–375PubMedCrossRefGoogle Scholar
  233. Wamsley B, Fishell G (2017) Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 18:299–309PubMedCrossRefGoogle Scholar
  234. Williams PA, Larimer P, Gao Y, Strowbridge BW (2007) Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J Neurosci 27:13756–13761PubMedCrossRefGoogle Scholar
  235. Wittner L, Henze DA, Záborszky L, Buzsáki G (2006) Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 24:1286–1298PubMedCrossRefPubMedCentralGoogle Scholar
  236. Wittner L, Henze DA, Záborszky L, Buzsáki G (2007) Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct Funct 212:75–83PubMedPubMedCentralCrossRefGoogle Scholar
  237. Zeisel A, Manchado ABM, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Linnarsson S (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142PubMedCrossRefGoogle Scholar
  238. Zhao C (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Integrative NeuroanatomyCharité – Universitätsmedizin BerlinBerlinGermany
  2. 2.Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations