Connectivity of the Hippocampus

  • Menno P. WitterEmail author
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


The aim of this chapter is to extend the standard simplified diagram of the connectional organization of the hippocampus found in many current textbooks, by adding details on the connectivity of area CA2 and on entorhinal intrinsic wiring. In the chapter, some of the ‘traditional wisdoms’ on hippocampal connectivity are discussed, emphasizing the need for a more inclusive framework to model the hippocampus. The chapter focusses on intrinsic connections, and many of the well-known extrinsic connections of the hippocampus will not be covered in this chapter, for two reasons. First, the information is already available at a summarized (meta) level, and a new summary would not assist those who need anatomical details to contribute to the explanation of the functional outcome of a study. Second, this chapter is meant to provide a framework of knowledge to support computational modelling of the region, and therefore only the most relevant and quantitative data on the connectivity of the hippocampus are covered.


Hippocampal formation Anatomy Parahippocampal region Topographical organization Entorhinal cortex 



The revision of this chapter has been supported by the Kavli Foundation, the Centre of Excellence scheme – Centre for Neural Computation and research grant # 191929 and 227769 of the Research Council of Norway and The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits.


  1. online searchable database of hippocampus connectivity and visualization tools
  2. online atlas tools with detailed description of the anatomy of the hippocampal region in the rat
  3. index of morphologies of hippocampal neurons

Further Reading

  1. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591CrossRefGoogle Scholar
  2. Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Progr Brain Res 83:1–11CrossRefGoogle Scholar
  3. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progr Br Res 163:3–22CrossRefGoogle Scholar
  4. Blaabjerg M, Zimmer J (2007) The dentate mossy fibers: structural organization, development and plasticity. Progr Br Res 163:85–107CrossRefGoogle Scholar
  5. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435(4):406–417CrossRefGoogle Scholar
  6. Canto CB, Witter MP (2012a) Cellular properties of principal neurons in the rat entorhinal cortex. I The lateral entorhinal cortex. Hippocampus 22:1256–1276CrossRefGoogle Scholar
  7. Canto CB, Witter MP (2012b) Cellular properties of principal neurons in the rat entorhinal cortex. II The medial entorhinal cortex. Hippocampus 22:1277–1299CrossRefGoogle Scholar
  8. Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 381243Google Scholar
  9. Cappaert NLM, van Strien NM, Witter MP (2015) Hippocampal formation. In: Paxinos G (ed) The rat brain, 4th edn. Elsevier Academic, San Diego/London, pp 511–574Google Scholar
  10. Dudek SM, Alexander GM, Farris S (2016 Feb) Rediscovering area CA2: unique properties and functions. Nat Rev Neurosci 17(2):89–102. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gatome CW et al (2010) Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse. Neuroscience 170:156CrossRefGoogle Scholar
  12. Hamam BN et al (2000) Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. J Comp Neurol 418:457CrossRefGoogle Scholar
  13. Haman BN et al (2002) Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. J Comp Neurol 451:45CrossRefGoogle Scholar
  14. Jones MW, McHugh TJ (2011 Oct) Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci 34(10):526–535. CrossRefPubMedGoogle Scholar
  15. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57CrossRefGoogle Scholar
  16. Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420CrossRefGoogle Scholar
  17. Matsuda S, Kobayashi Y, Ishizuka N (2004) A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus. Neurosci Res 29:241–252CrossRefGoogle Scholar
  18. Megias M, Emri ZS, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540CrossRefGoogle Scholar
  19. Merril DA, Chiba AA, Tuszynski MH (2001) Conservation of neuronal number and size in the entorhinal cortex in behaviorally characterized aged rats. J Comp Neurol 438:445–456CrossRefGoogle Scholar
  20. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93:9926–9930CrossRefGoogle Scholar
  21. Rapp PR, Deroche PS, Mao Y, Burwell RD (2002) Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits. Cer Ctx 12:1171–1179Google Scholar
  22. Rasmussen T, Schliemann T, Sørensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Ageing 17:143–147CrossRefGoogle Scholar
  23. Strange B, Witter MP, Moser EI, Lein E (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655–669CrossRefGoogle Scholar
  24. Tahvildari B, Alonso A (2005) Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. J Comp Neurol 491:123CrossRefGoogle Scholar
  25. Van Strien NM, Cappeart N, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10:272–282CrossRefGoogle Scholar
  26. West MJ et al (1991) Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482CrossRefGoogle Scholar
  27. Wickersham IR, Finke S, Conzelmann KK, Callaway EM (2007) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4:47–49CrossRefGoogle Scholar
  28. Witter MP (2006) Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res 174(2):251–264CrossRefGoogle Scholar
  29. Witter MP (2007a) Intrinsic and extrinsic wiring of CA3; indications for connectional heterogeneity. Learn Mem 14:705–713CrossRefGoogle Scholar
  30. Witter MP (2007b) The Perforant path. Projections from the entorhinal cortex to the dentate gyrus. Progr Br Res 163:43–61CrossRefGoogle Scholar
  31. Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253CrossRefGoogle Scholar
  32. Witter MP, Canto CB, Couey JJ, Koganezawa N, O’Reilly K (2014) Architecture of spatial circuits in the hippocampal region. Phil Trans R Soc B 369:20120515CrossRefGoogle Scholar
  33. Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S (2017a) Architecture of the entorhinal cortex. A review of entorhinal anatomy in rodents with some comparative notes. Front Syst Neurosci 11:46. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Witter MP, Kleven H, Kobro Flatmoen A (2017b) Comparative contemplations on the hippocampus. Brain Behav Evol 90:15–24. CrossRefPubMedGoogle Scholar
  35. Zhang S-J, Ye J, Couey JJ, Witter MP, Moser EI, Moser M-B (2014) Functional connectivity of the entorhinal-hippocampal space circuit. Phil Trans R Soc B 369:20120516CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical MicrocircuitsNTNU Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations