Advertisement

Bioindicators of Degraded Soils

  • Debarati Bhaduri
  • Dibyendu Chatterjee
  • Koushik Chakraborty
  • Sumanta Chatterjee
  • Ajoy Saha
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 33)

Abstract

Bioindicators are used to identify and monitor soil quality. Degraded soils refers to various altered properties such as physically-poor soils, C- and nutrient-deficient soils, waterlogged soils, salt-affected soils, and soils polluted by heavy metals and pesticides. Here we review degraded soils and bioindicators using plants, microbes and other living cells.

Keywords

Soil biological indicators Soil ecology Environmental remediation Soil pollution Restoring problem soils Environmental engineering 

References

  1. Abdi MR, Kamali M, Vaezifar S (2008) Distribution of radioactive pollution of 238U, 232Th, 40K and 137Cs in northwestern coasts of Persian Gulf, Iran. Mar Pollut Bull 56:751–757Google Scholar
  2. Abrol IP, Chhabra R, Gupta RK (1980) A fresh look at the diagnostic criteria for sodic soils. In: International symposium on salt affected soils. Central Soil Salinity Research Institute, Karnal. pp 142–147, February 18–21, 1980Google Scholar
  3. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340.  https://doi.org/10.1038/ngeo846 CrossRefGoogle Scholar
  4. Anderson TH, Domsch KH (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol Biochem 22:251–255.  https://doi.org/10.1016/0038-0717(90)90094-G CrossRefGoogle Scholar
  5. Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395.  https://doi.org/10.1016/0038-0717(93)90140-7 CrossRefGoogle Scholar
  6. Anderson TH, Domsch KH (2010) Soil microbial biomass: the eco-physiological approach. Soil Biol Biochem 42:2039–2043.  https://doi.org/10.1016/j.soilbio.2010.06.026 CrossRefGoogle Scholar
  7. Andresen LC, Dungait JAJ, Bol R, Selsted MB, Ambus P, Michelsen A (2014) Bacteria and Fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C Glycine and FACE CO2. PLoS One 9(1):e85070.  https://doi.org/10.1371/journal.pone.0085070 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Balser TC, Wixon DL (2009) Investigating biological control over soil carbon temperature sensitivity. Glob Chang Biol 15:2935–2949.  https://doi.org/10.1111/j.1365-2486.2009.01946.x CrossRefGoogle Scholar
  9. Banning N, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy D (2011) Microbial community successional patterns during forest ecosystem restoration. Appl Environ Microbiol 77:6158–6164.  https://doi.org/10.1128/AEM.00764-11 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E (2009) Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol 15:2950–2957.  https://doi.org/10.1111/j.1365-2486.2009.01882.x CrossRefGoogle Scholar
  11. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814CrossRefPubMedGoogle Scholar
  12. Bastida F, Moreno JL, Hernández T, García C (2006) Microbiological degradation index of soils in a semiarid climate. Soil Biol Biochem 38:3463–3473.  https://doi.org/10.1016/j.soilbio.2006.06.001 CrossRefGoogle Scholar
  13. Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol 150:55–72.  https://doi.org/10.1104/pp.109.137737 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bhaduri D, Purakayastha TJ (2014) Long-term tillage, water and nutrient management in rice–wheat cropping system: assessment and response of soil quality. Soil Tillage Res 144:83–95.  https://doi.org/10.1016/j.still.2014.07.007 CrossRefGoogle Scholar
  15. Bhaduri D, Pal S, Purakayastha TJ, Chakraborty K, Yadav RS, Akhtar MS (2015) Soil quality and plant-microbe interactions in the rhizosphere. In: Sustainable agriculture reviews. Springer International Publishing, Cham, pp 307–335.  https://doi.org/10.1007/978-3-319-16742-8_9 CrossRefGoogle Scholar
  16. Bhaduri D, Purakayastha TJ, Patra AK, Singh M, Wilson BR (2017a) Biological indicators of soil quality in a long-term rice–wheat system on the Indo-Gangetic plain: combined effect of tillage–water–nutrient management. Environ Earth Sci 76(5):202.  https://doi.org/10.1007/s12665-017-6513-0 CrossRefGoogle Scholar
  17. Bhaduri D, Pramanik P, Ghosh S, Chakraborty K, Pal S (2017b) Agroforestry for improving soil biological health. In: Gupta SK, Panwar P, Kaushal R (eds) Agroforestry for increased production and livelihood security. New India Publishing Agency, New Delhi, pp 465–491 ISBN: 9789385516764Google Scholar
  18. Bhattacharjya S, Bhaduri D, Chauhan S, Chandra R, Raverkar KP, Pareek N (2017) Comparative evaluation of three contrasting land use systems for soil carbon, microbial and biochemical indicators in North-Western Himalaya. Ecol Engg 103:21–30.  https://doi.org/10.1016/j.ecoleng.2017.03.001 CrossRefGoogle Scholar
  19. Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1:91–104.  https://doi.org/10.1016/j.cj.2013.08.002 CrossRefGoogle Scholar
  20. Biasi C, Rusalimova O, Meyer H, Kaiser C, Wanek W, Barsukov P, Junger H, Richter A (2005) Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun Mass Spectrom 19:1401–1408.  https://doi.org/10.1002/rcm.1911 CrossRefPubMedGoogle Scholar
  21. Biasi C, Meyer H, Rusolimova O, Hämmerle R, Kaiser C, Baranyi C, Daims H, Lashchinsky N, Barsukov P, Richter A (2008) Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of lichen-rich dwarf shrub tundra in Siberia. Plant Soil 307:191–205.  https://doi.org/10.1007/s11104-008-9596-2 CrossRefGoogle Scholar
  22. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40(2):85–95.  https://doi.org/10.1111/j.1574-6941.2002.tb00940.x CrossRefPubMedGoogle Scholar
  23. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327.  https://doi.org/10.1111/j.1461-0248.2008.01251.x CrossRefPubMedGoogle Scholar
  24. Bramley H, Tyerman SD, Turner DW, Turner N (2011) Root growth of lupins is more sensitive to waterlogging than wheat. Funct Plant Biol 38:910–918.  https://doi.org/10.1071/FP11148 CrossRefGoogle Scholar
  25. Briones MJI, Ostle NJ, McNamara NP, Poskitt J (2009) Functional shifts of grassland soil communities in response to soil warming. Soil Biol Biochem 41:315–322.  https://doi.org/10.1016/j.soilbio.2008.11.003 CrossRefGoogle Scholar
  26. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community response to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007.  https://doi.org/10.1128/AEM.02874-09 CrossRefPubMedGoogle Scholar
  27. Chaudri AM, Lawlor K, Preston S, Paton GI, Killham K, McGrath SP (2000) Response of a Rhizobium-based luminescence biosensor to Zn and Cu in soil solutions from sewage sludge treated soils. Soil Biol Biochem 32(3):383–388.  https://doi.org/10.1016/S0038-0717(99)00166-2 CrossRefGoogle Scholar
  28. Chen PW, Fonseca LL, Hannun YA, Voit EO (2013) Coordination of rapid sphingolipid responses to heat stress in yeast. PLoS Comp Biol 9:e1003078.  https://doi.org/10.1371/journal.pcbi.1003078 CrossRefGoogle Scholar
  29. Dalal RC, Eberhard R, Grantham T, Mayer DG (2003a) Application of sustainability indicators, soil organic matter and electrical conductivity, to resource management in the northern grains region. Aust J Exp Agric 43:253–259.  https://doi.org/10.1071/EA00186 CrossRefGoogle Scholar
  30. Dalal RC, Wang WJ, Robertson GP, Parton WJ (2003b) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res 41:165–195.  https://doi.org/10.1071/SR02064 CrossRefGoogle Scholar
  31. Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39:164–177.  https://doi.org/10.1016/j.soilbio.2006.06.020 CrossRefGoogle Scholar
  32. Degenkolbe T, Do PT, Kopka J, Zuther E, Hincha DK, Kohl KI (2013) Identification of drought tolerant markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS ONE 8:e63637.  https://doi.org/10.1371/journal.pone.0063637 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Deyanira QM, Estrada-Luna AA, Altamirano-Hernandez J, Pena-Cabriales JJ, de Oca-Luna RM, Cabrera-Ponce JL (2012) Use of trehalose metabolism as a biochemical marker in rice breeding. Mol Breed 30:469–477.  https://doi.org/10.1007/s11032-011-9636-0 CrossRefGoogle Scholar
  34. Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CABI Publishing, WallingfordGoogle Scholar
  35. Dimitriu PA, Prescott C, Quideau SA, Grayston SJ (2010) Impact of reclamation of surface-mined boreal forest soils on microbial community composition and function. Soil Biol Biochem 42:2289–2297.  https://doi.org/10.1016/j.soilbio.2010.09.001 CrossRefGoogle Scholar
  36. Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127.  https://doi.org/10.1016/S0167-8809(01)00246-8 CrossRefGoogle Scholar
  37. Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11.  https://doi.org/10.1016/S0929-1393(00)00067-6 CrossRefGoogle Scholar
  38. Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and sulfide forming bacteria. J Gen Microbiol 132:1815–1825.  https://doi.org/10.1099/00221287-132-7-1815 CrossRefGoogle Scholar
  39. Drenzek NJ, Montluçon DB, Yunker MB, Macdonald RW, Eglinton TI (2007) Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements. Marine Chem 103(1):146–162.  https://doi.org/10.1016/j.marchem.2006.06.017 CrossRefGoogle Scholar
  40. Driessen P, Deckers J, Spaargaren, O (eds) (2001) Lecture notes on the major soils of the world, world soil resources reports 94. Food and Agriculture Organization of the United Nations, Rome, 334 pGoogle Scholar
  41. Elzenga JTM, Veen HV (2010) Waterlogging and plant nutrient uptake. In: Mancuso S, Shabala S (eds) Waterlogging tolerance and signaling in plants. Springer, Heidelberg, pp 23–35.  https://doi.org/10.1007/978-3-642-10305-6_2 CrossRefGoogle Scholar
  42. Feng X, Simpson MJ (2009) Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol Biochem 41:804–812.  https://doi.org/10.1016/j.soilbio.2009.01.020 CrossRefGoogle Scholar
  43. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259.  https://doi.org/10.1016/j.pestbp.2006.12.003. ISSN 00483575CrossRefGoogle Scholar
  44. Fernandes TCC, Mazzeo DEC, Marin-Morales MA (2009) Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent Trifluralin herbicide. Ecotoxicol Environ Saf 72:1680–1686.  https://doi.org/10.1016/j.ecoenv.2009.03.014. ISSN 01476513CrossRefPubMedGoogle Scholar
  45. Ferrat L, Pergent-Martini C, Roméo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65(2):187–204.  https://doi.org/10.1016/S0166-445X(03)00133-4 CrossRefPubMedGoogle Scholar
  46. Fontanetti CS, Nogarol LR, de Souza RB, Perez DG, Maziviero GT (2011) Bioindicators and biomarkers in the assessment of soil toxicity. In: Pascucci S (ed) Soil contamination. Intechopen, Rijeka, pp 143–168.  https://doi.org/10.5772/25042 CrossRefGoogle Scholar
  47. French S, Levy-Booth D, Samarajeewa A, Shannon KE, Smith J, Trevors JT, (2009) Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World J Microbiol Biotechnol 25(11):1887–1900CrossRefGoogle Scholar
  48. Frey SD, Drijber R, Smith H, Melillo JM (2008) Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem 40:2904–2907.  https://doi.org/10.1016/j.soilbio.2008.07.020 CrossRefGoogle Scholar
  49. Galay-Burgos M, Spurgeon DJ, Weeks JM, Stürzenbaum SR, Morgan AJ, Kille P (2003) Developing a new method for soil pollution monitoring using molecular genetic biomarkers. Biomarkers 8(3–4):229–239.  https://doi.org/10.1080/354750031000138685 CrossRefPubMedGoogle Scholar
  50. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903.  https://doi.org/10.1073/pnas.252637799 CrossRefPubMedGoogle Scholar
  51. Gómez-Sagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbisu C (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut 223(6):3249–3262.  https://doi.org/10.1007/s11270-012-1106-8 CrossRefGoogle Scholar
  52. Gonzalez-Quiñones V, Stockdale EA, Banning NC, Hoyle FC, Sawada Y, Wherrett AD, Jones DL, Murphy DV (2011) Soil microbial biomass—interpretation and consideration for soil monitoring. Soil Res 49(4):287–304.  https://doi.org/10.1071/SR10203 CrossRefGoogle Scholar
  53. Grant WF (1994) The present status of higher plant bioassays for the detection of environmental mutagens. Mutation Res 310(2):175–185.  https://doi.org/10.1016/0027-5107(94)90112-0 CrossRefPubMedGoogle Scholar
  54. Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosen Bioelectronics 16(9):667–674.  https://doi.org/10.1016/S0956-5663(01)00230-5 CrossRefGoogle Scholar
  55. Hirano T, Tamae K (2010) Heavy metal-induced oxidative DNA damage in earthworms: a review. Appl Environ Soil Sci 2010:1–7.  https://doi.org/10.1155/2010/726946 CrossRefGoogle Scholar
  56. Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manag 35(5):649–666.  https://doi.org/10.1007/s00267-004-0211-x CrossRefGoogle Scholar
  57. Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103:9738–9743.  https://doi.org/10.1073/pnas.0602868103 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: mitigation. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyers LA (eds) Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  59. Invers O, Perez M, Romero J (1995) Alkaline phosphatase activity as a tool for assessing nutritional conditions in the seagrass Posidonia oceanica (L) Delile. Sci Mar 59(1):41–47. http://hdl.handle.net/2445/32430 Google Scholar
  60. Izquierdo I, Caravaca F, Alguacil MM, Hernandez G, Roldan A (2005) Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl Soil Ecol 30:3–10.  https://doi.org/10.1016/j.apsoil.2005.02.004 CrossRefGoogle Scholar
  61. Kammenga JE, Dallinger R, Donker MH, Köhler HR, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial in terrestrial invertebrates for ecotoxicological soil risks assessment. Rev Environ Contam Toxicol 164:93–147PubMedGoogle Scholar
  62. Kanaya N, Gill BS, Grover IS, Murin A, Osiecka R, Sandhu SS, Andersson HC (1994) Vicia faba chromosomal aberration assay. Mutat Res Fundam Mol Mech Mutagen 310(2):231–247.  https://doi.org/10.1016/0027-5107(94)90116-3 CrossRefGoogle Scholar
  63. Kang GS, Beri V, Sidhu BS, Rupela OP (2005) A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol Fertil Soils 41:389–398.  https://doi.org/10.1007/s00374-005-0857-4 CrossRefGoogle Scholar
  64. Kao NH, Su MC, Fan JR, Chung YY (2015) Identification and quantification of biomarkers and polycyclic aromatic hydrocarbons (PAHs) in an aged mixed contaminated site: from source to soil. Environ Sci Pollut Res 22(10):7529–7546.  https://doi.org/10.1007/s11356-015-4237-9 CrossRefGoogle Scholar
  65. Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J (2010) Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol Biochem 42:72–82.  https://doi.org/10.1016/j.soilbio.2009.10.002 CrossRefGoogle Scholar
  66. Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R (2005) Phospholipid fatty acid-A bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci 89(7):1103–1112Google Scholar
  67. Keltjens WG, Van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203(1):119–126.  https://doi.org/10.1023/A:1004373700581 CrossRefGoogle Scholar
  68. Kihlman BA (1975) Root tips of Vicia faba for the study of the induction of chromosomal aberrations. Mutat Res Environ Mutagen Relat Subj 31(6):401–412.  https://doi.org/10.1016/0165-1161(75)90050-3 CrossRefGoogle Scholar
  69. Kihlman BA, Andersson HC (1984) Root tips of Vicia faba for the study of the induction of chromosomal aberrations and sister chromatid exchanges. In: Kilbey BJ (ed) Handbook of mutagenicity test procedures. Elsevier, Amsterdam, New York, OxfordGoogle Scholar
  70. Kihlman BA, Kronborg D (1976) Sister chromatid exchanges in Vicia faba. I. Demonstration by a modified fluorescent plus Giemsa (FPG) technique. Chromosoma 51:1–10.  https://doi.org/10.1007/BF00285801 CrossRefGoogle Scholar
  71. Knakievicz T (2014) Planarians as invertebrate bioindicators in freshwater environmental quality: the biomarkers approach. Ecotoxicol Environ Contam 9:01–12.  https://doi.org/10.5132/eec.2014.01.001 CrossRefGoogle Scholar
  72. Koblizek M, Masojidek J, Komenda J, Kucera T, Pilloton R, Mattoo AK, Giardi MT (1998) A sensitive photosystem II based biosensor for detection of a class of herbicides. Biotechnol Bioeng 60(6):664–669CrossRefPubMedGoogle Scholar
  73. Koper J, Piotrowska A (2003) Application of biochemical index to define soil fertility depending on varied organic and mineral fertilization. Electron J Pol Agric Univ 6, #06. Available Online:http://www.ejpau.media.pl/volume6/issue1/agronomy/art-06.html
  74. Kroetsch DJ, Geng X, Chang SX, Saurette DD (2011) Organic soils of Canada: part 1. Wetland organic soils. Can J Soil Sci 91:807–822.  https://doi.org/10.1139/CJSS10043 CrossRefGoogle Scholar
  75. Kroger S, Turner APF, Mosbach K, Haupt K (1999) Imprinted polymer based sensor system for herbicides using differential pulse voltammetry on screen-printed electrodes. Anal Chem 71(17): 3698–3702CrossRefPubMedGoogle Scholar
  76. Kuriyama S, Rechnitz GA (1981) Plant tissue-based bioselective membrane electrode for glutamate. Anal Chim Acta 131:91–96CrossRefGoogle Scholar
  77. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81.  https://doi.org/10.1016/j.mrrev.2009.06.002 CrossRefPubMedGoogle Scholar
  78. Lindberg N, Engtsson JB, Persson T (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J Appl Ecol 39:924–936.  https://doi.org/10.1046/j.1365-2664.2002.00769.x CrossRefGoogle Scholar
  79. Lovett Doust J, Schmidt M, Lovett Doust L (1994) Biological assessment of aquatic pollution: a review, with emphasis on plants as biomonitors. Biol Rev 69:147–186.  https://doi.org/10.1111/j.1469-185X.1994.tb01504.x CrossRefGoogle Scholar
  80. Lui J, Gunther A, Bilitewski U (1997) Detection of methamidophos in vegetables using a photometric flow injection system. Environ Monit Assess 44(1–3):375–382.  https://doi.org/10.1023/A:1005704017083 CrossRefGoogle Scholar
  81. Madoz-Escande C, Simon O (2006) Contamination of terrestrial gastropods, Helix aspersa Maxima, with 137Cs, 85Sr, 133Ba, 123mTe by direct, trophic and combined pathways. J Environ Radioact 89:30–47.  https://doi.org/10.1016/j.jenvrad.2006.03.004 CrossRefPubMedGoogle Scholar
  82. Majer B, Grummt T, Uhl M, Knasmüller S (2005) Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochim Hydrobiol 33(1):45–55.  https://doi.org/10.1002/aheh.200300557 CrossRefGoogle Scholar
  83. Malcolm GM, López-Gutiérrez JC, Koide RT, Eissenstat DM (2008) Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Glob Chang Biol 14:1–12.  https://doi.org/10.1111/j.1365-2486.2008.01555.x CrossRefGoogle Scholar
  84. Masto RE, Chhonkar PK, Singh D, Patra AK (2007) Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agric Ecosyst Environ 118(1):130–142.  https://doi.org/10.1016/j.agee.2006.05.008 CrossRefGoogle Scholar
  85. Mazzeo DEC, Levy CE, Angelis DF, Marin-Morales MA (2010) BTEX biodegradation by bactéria from effluents of petroleum refinery. Sci Total Environ 408(20):4334–4340.  https://doi.org/10.1016/j.scitotenv.2010.07.004 CrossRefPubMedGoogle Scholar
  86. McGrath SP, Knight B, Killham K, Preston S, Paton GI (1999) Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux based biosensor. Environ Toxicol Chem 18(4):659–663.  https://doi.org/10.1002/etc.5620180411 CrossRefGoogle Scholar
  87. Merino-Gergichevich C, Alberdi M, Ivanov AG, Reyes-Diaz M (2010) Al3+–Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10:217–243Google Scholar
  88. Mitloehner R, Koepp R (2007) Bioindicator capacity of trees towards dryland salinity. Trees 21:411–419.  https://doi.org/10.1007/s00468-007-0133-3 CrossRefGoogle Scholar
  89. Mukhopadhyay S, Masto RE, Cerdà A, Ram LC (2016) Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena 14:100–108.  https://doi.org/10.1016/j.catena.2016.02.023 CrossRefGoogle Scholar
  90. Muñoz Rojas M, Erickson TE, Dixon KW, Merritt DJ (2016) Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restor Ecol 24:S43–S52.  https://doi.org/10.1111/rec.12368 CrossRefGoogle Scholar
  91. Neher DA (2001) Role of nematodes in soil health and their use as indicator. J Nematol 33:161–168PubMedPubMedCentralGoogle Scholar
  92. Ohkouchi N, Eglinton TI (2008) Compound-specific radiocarbon dating of Ross Sea sediments: a prospect for constructing chronologies in high-latitude oceanic sediments. Quaternary Geochronology 3(3):235–243.  https://doi.org/10.1016/j.quageo.2007.11.001 CrossRefGoogle Scholar
  93. Olayinka OT, Idowu AB, Dedeke GA, Akinloye OA, Ademolu KO, Bamgbola AA (2011) Earthworm as bio-indicator of heavy metal pollution around Lafarge, Wapco Cement Factory, Ewekoro, Nigeria. In: Proceedings of the environmental man conference, Federal University of Agriculture, Abeokuta, NigeriaGoogle Scholar
  94. Park JH, Bolan NS, Chung JW, Naidu R, Megharaj M (2011) Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils. J Environ Monit 13:2234–2242CrossRefPubMedGoogle Scholar
  95. Potin P, Bouarab K, Kupper F, Kloareg B (1999) Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Curr Opin Microbiol 2:276–283.  https://doi.org/10.1016/S1369-5274(99)80048-4 CrossRefPubMedGoogle Scholar
  96. Puglisi E, Del Re AAM, Rao MA, Gianfreda L (2006) Development and validation of numerical indices integrating enzyme activities of soils. Soil Biol Biochem 38:1673–1681.  https://doi.org/10.1016/j.soilbio.2005.11.021 CrossRefGoogle Scholar
  97. Ralph PJ (2000) Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquat Bot 66:141–152.  https://doi.org/10.1016/S0304-3770(99)00024-8 CrossRefGoogle Scholar
  98. Raven PH, Berg LR, Johnson GB (1998) Environment, 2nd edn. Saunders College Publishing, New YorkGoogle Scholar
  99. Read J (1959) Radiation biology of Vicia faba in relation to the general problem. Blackwell, OxfordGoogle Scholar
  100. Richards LA (ed) (1954) Diagnosis and improvements of saline and alkali soils. USDA Agriculture Handbook 60. USDA, Washington, DC. 160 pGoogle Scholar
  101. Richardson JL, Vepraskas MJ (2001) Wetland soils; genesis, hydrology, landscapes and classification. CRC Press, Boca Raton, 417 pGoogle Scholar
  102. Ricketts HJ, Morgan AJ, Spurgeon DJ, Kille P (2003) Measurement of annetocin gene expression: a new reproductive biomarker in earthworm toxicology. Ecotox Environ Saf 57:4–10.  https://doi.org/10.1016/j.ecoenv.2003.08.008 CrossRefGoogle Scholar
  103. Rinnan R, Michelsen A, Bååth E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Chang Biol 13:28–39.  https://doi.org/10.1111/j.1365-2486.2006.01263.x CrossRefGoogle Scholar
  104. Rinnan R, Michelsen A, Jonasson S (2008) Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Appl Soil Ecol 39:271–281.  https://doi.org/10.1016/j.apsoil.2007.12.014 CrossRefGoogle Scholar
  105. Rinnan R, Stark S, Tolvanen A (2009) Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 97:788–800.  https://doi.org/10.1111/j.1365-2745.2009.01506.x CrossRefGoogle Scholar
  106. Ritz K, Black HIJ, Campbell CD, Harris JA, Wood C (2009) Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol Indic 9:1212–1221.  https://doi.org/10.1016/j.ecolind.2009.02.009 CrossRefGoogle Scholar
  107. Roda A, Rauch P, Ferri E, Girotti S, Ghini S, Carrea G, Bovara R (1994) Chemiluminiscent flow sensor for the determination of paraoxon and aldicarb pesticides. Anal Chim Acta 294(1):35–42.  https://doi.org/10.1016/0003-2670(94)85043-7 CrossRefGoogle Scholar
  108. Rodrigues GS, Ma TH, Pimentel D, Weinstein LH (1997) Tradescantia bioassays as monitoring systems for environmental mutagenesis: a review. Crit Rev Sci 16:325–359.  https://doi.org/10.1080/07352689709701953 CrossRefGoogle Scholar
  109. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596.  https://doi.org/10.1128/AEM.02775-08 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Saha A, Pipariya A, Bhaduri D (2016a) Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environ Earth Sci 75(7):1–13.  https://doi.org/10.1007/s12665-015-5116-x CrossRefGoogle Scholar
  111. Saha A, Bhaduri D, Pipariya A, Jain NK (2016b) Influence of imazethapyr and quizalofop-p-ethyl application on microbial biomass and enzymatic activity in peanut grown soil. Environ Sci Poll Res 23(23):23758–23771.  https://doi.org/10.1007/s11356-016-7553-9 CrossRefGoogle Scholar
  112. Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils– a review. Plant Cell Tissue Organ Cult 75:189–207.  https://doi.org/10.1023/A:1025843829545 CrossRefGoogle Scholar
  113. Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43:1417–1425.  https://doi.org/10.1016/j.soilbio.2011.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Schudoma C, Steinfath M, Sprenger H, van Dongen JT, Hincha D, Zuther E, Geigenberger P, Kopka J, Köhl K, Walther D (2012) Conducting molecular biomarker discovery studies in plants. In: High-throughput phenotyping in plants: methods and protocols. Humana Press, New York, pp 127–150.  https://doi.org/10.1007/978-1-61779-995-2_10 CrossRefGoogle Scholar
  115. Schwalbe M, Teller S, Oelmuller R, Appenroth KJ (1999) Influence of UVB irradiation on nitrate and ammonium assimilating enzymes in Spirodela polyrhiza. Aquat Bot 64:19–34.  https://doi.org/10.1016/S0304-3770(99)00005-4 CrossRefGoogle Scholar
  116. Sergeyera TA, Piletsky SA, Brovko AA, Slinchenko EA, Sergeeva LM, El’skaya AV (1999) Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductimetric sensor for herbicides detection. Anal ChimActa 392(2–3):105–111Google Scholar
  117. Shima N, Xiao LZ, Sakuramoto F, Ichikawa S (1997) Young inflorescence-bearing shoots with roots of Tradescantia clone BNL 4430 cultivated on nutrient solution circulating systems: an alternative to potted plants and cuttings for mutagenicity tests. Mutat Res 395:199–208.  https://doi.org/10.1016/S1383-5718(97)00169-1 CrossRefPubMedGoogle Scholar
  118. Stankovic S, Stankovic AR (2013) Bioindicators of toxic metals. In: Green materials for energy, products and depollution. Springer, Dordrecht, pp 151–228.  https://doi.org/10.1007/978-94-007-6836-9_5 CrossRefGoogle Scholar
  119. Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12(1):63–84.  https://doi.org/10.1007/s10311-013-0430-6 CrossRefGoogle Scholar
  120. Steinkellner H, Kassie F, Knasmüller S (1999) Tradescantia-micronucleus assay for the assessment of the clastogenicity of Austrian water. Mutat Res 426:113–116.  https://doi.org/10.1016/S0027-5107(99)00051-2 CrossRefPubMedGoogle Scholar
  121. Strachan G, Capel S, Maciel H, Porter AJR, Paton GI (2002) Application of cellular and immunological biosensor techniques to assess herbicide toxicity in soils. Eur J Soil Sci 53(1):37–44.  https://doi.org/10.1046/j.1365-2389.2002.00421.x CrossRefGoogle Scholar
  122. Tavares TM, Carvalho FM (1992) Avaliação de exposição de populações humanas a metais pesados no ambiente: exemplos do recôncavo baiano. Química Nova 15(2):147–154Google Scholar
  123. van Straalen NM, Verhoef HA (1997) The development of a bioindicator system for soil acidity based on arthropod pH preferences. J Appl Ecol 34:217–232.  https://doi.org/10.2307/2404860 CrossRefGoogle Scholar
  124. Vangronsveld J, Mench M, Mocquot B, Clijsters H (1998) Biomarqueurs d’exposition des ve’ge’taux terrestres aux polluants. Application a` la pollution par les me’taux. In: Lagadic L, Caquet T, Amiard JC, Ramade F (eds) Utilisation de biomarqueurs pour la surveillance de la qualite´ de l’environnement. Lavoisier publ, Tec & Doc 320 pGoogle Scholar
  125. Vanhala P, Karhu K, Tuomi M, Björklöf K, Fritze H, Hyvärinen H, Liski J (2011) Transplantation of organic surface horizons of boreal soils into warmer regions alters microbiology but not the temperature sensitivity of decomposition. Glob Chang Biol 17:538–550.  https://doi.org/10.1111/j.1365-2486.2009.02154.x CrossRefGoogle Scholar
  126. Vartapetian B, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79(Suppl. A):3–20.  https://doi.org/10.1093/oxfordjournals.aob.a010303 CrossRefGoogle Scholar
  127. Vavilin DV, Ducruet JM, Matorin DN, Venediktov PS, Rubin AB (1998) Membrane lipid peroxidation, cell viability and photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions. J Photochem Photobiol B Biol 42:233–239.  https://doi.org/10.1016/S1011-1344(98)00076-1 CrossRefGoogle Scholar
  128. Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84(1):1–12.  https://doi.org/10.1016/S1537-5110(02)00236-2 CrossRefGoogle Scholar
  129. Ventura BC (2009) Investigação da mutagenicidade do azocorante comercial BDCP (Black Dye Commercial Product), antes e após tratamento microbiano, utilizando o sistema – teste de Allium cepa. Tese de Doutorado. Instituto de Biociências. Universidade Estadual Paulista. Rio Claro-SP, 205 pGoogle Scholar
  130. Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought response in rice. BMC Genomics 12:149.  https://doi.org/10.1186/1471-2164-12-149 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Watzinger A (2015) Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions. Soil Biol Biochem 86:98–107.  https://doi.org/10.1016/j.soilbio.2015.03.019 CrossRefGoogle Scholar
  132. White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345.  https://doi.org/10.1016/j.mrrev.2004.09.003 CrossRefPubMedGoogle Scholar
  133. Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM (2011) Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in Maize. Plant Physiol 157:1841–1852.  https://doi.org/10.1104/pp.111.187898 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Yildiz D, Kula I, Ay G, Baslar S, Dogan Y (2010) Determination of trace elements in the plants of Mt. Bozdag, Izmir, Turkey. Arch Biol Sci Belgrade 62(3):731–738.  https://doi.org/10.2298/ABS1003731Y CrossRefGoogle Scholar
  135. Yu T, Zhang Y, Hu XN, Meng W (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81:55–64.  https://doi.org/10.1016/j.ecoenv.2012.04.014 CrossRefGoogle Scholar
  136. Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005) Soil microbial responses to experimental warming and clipping in a tall grass prairie. Glob Chang Biol 11:266–277.  https://doi.org/10.1111/j.1365-2486.2005.00902.x CrossRefGoogle Scholar
  137. Zhoua Q, Zhanga J, Fua J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150.  https://doi.org/10.1016/j.aca.2007.11.018 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Debarati Bhaduri
    • 1
  • Dibyendu Chatterjee
    • 1
  • Koushik Chakraborty
    • 1
  • Sumanta Chatterjee
    • 1
  • Ajoy Saha
    • 2
  1. 1.ICAR-National Rice Research InstituteCuttackIndia
  2. 2.ICAR-Central Inland Fisheries Research Institute, Bangalore Research CentreBangaloreIndia

Personalised recommendations