Advertisement

Efficient Proof Composition for Verifiable Computation

  • Julien Keuffer
  • Refik Molva
  • Hervé Chabanne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11098)

Abstract

Outsourcing machine learning algorithms helps users to deal with large amounts of data without the need to develop the expertise required by these algorithms. Outsourcing however raises severe security issues due to potentially untrusted service providers. Verifiable computing (VC) tackles some of these issues by assuring computational integrity for an outsourced computation. In this paper, we design a VC protocol tailored to verify a sequence of operations for which no existing VC scheme is suitable to achieve realistic performance objective for the entire sequence. We thus suggest a technique to compose several specialized and efficient VC schemes with a general purpose VC protocol, like Parno et al.’s Pinocchio, by integrating the verification of the proofs generated by these specialized schemes as a function that is part of the sequence of operations verified using the general purpose scheme. The resulting scheme achieves the objectives of the general purpose scheme with increased efficiency for the prover. The scheme relies on the underlying cryptographic assumptions of the composed protocols for correctness and soundness.

Keywords

Verifiable computation Proof composition Neural networks 

Notes

Acknowledgment

The authors would like to thank Gaïd Revaud for her precious programming assistance. This work was partly supported by the TREDISEC project (G.A. no 644412), funded by the European Union (EU) under the Information and Communication Technologies (ICT) theme of the Horizon 2020 (H2020) research and innovation programme.

References

  1. 1.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 99–108 (1996)Google Scholar
  2. 2.
    Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy SP 2014, Berkeley, CA, USA, 18–21 May 2014, pp. 459–474 (2014)Google Scholar
  3. 3.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_6CrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_16CrossRefGoogle Scholar
  5. 5.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 111–120 (2013). http://doi.acm.org/10.1145/2488608.2488623
  6. 6.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 90–112 (2012)Google Scholar
  7. 7.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  8. 8.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  9. 9.
    Ghodsi, Z., Gu, T., Garg, S.: Safetynets: verifiable execution of deep neural networks on an untrusted cloud. CoRR abs/1706.10268 (2017). http://arxiv.org/abs/1706.10268
  10. 10.
    Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. Electron. Colloq. Comput. Complex. (ECCC) 3(42) (1996). http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.html
  11. 11.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 113–122 (2008)Google Scholar
  12. 12.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.orgzbMATHGoogle Scholar
  13. 13.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_11CrossRefGoogle Scholar
  14. 14.
    Kosba, A., et al.: C\(\emptyset \)c\(\emptyset \): a framework for building composable zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1093 (2015). http://eprint.iacr.org/2015/1093
  15. 15.
    Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. In: 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, 22–24 October 1990, vol. I, pp. 2–10 (1990)Google Scholar
  16. 16.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, 19–22 May 2013, pp. 238–252 (2013)Google Scholar
  17. 17.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003CrossRefGoogle Scholar
  18. 18.
    Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_5CrossRefGoogle Scholar
  19. 19.
    Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and control flow in verifiable outsourced computation. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, 8–11 February 2015 (2015)Google Scholar
  20. 20.
    Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them. Commun. ACM 58(2), 74–84 (2015). http://doi.acm.org/10.1145/2641562CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Julien Keuffer
    • 1
    • 2
  • Refik Molva
    • 2
  • Hervé Chabanne
    • 1
    • 3
  1. 1.IdemiaIssy-les-MoulineauxFrance
  2. 2.EurecomBiotFrance
  3. 3.Telecom ParisTechParisFrance

Personalised recommendations