Advertisement

A. Weil

  • Peter Roquette
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2222)

Abstract

André Weil (1906–1998) was 8 years younger than Hasse. He was born and raised in Paris. He received his doctorate 1928 at the University of Paris, supervised by Hadamard, with his thesis “Arithmetic of algebraic curves” where he proved his part of what today is called the Mordell-Weil Theorem. His name appeared already several times in our story since he had exchanged letters with Hasse and had early shown interest in the RHp.

References

  1. [Aud11]
    M. Audin, Correspondance entre Henri Cartan et André Weil (1928–1991). Paris: Société Mathématique de France, 2011. xiii, 720 pp.Google Scholar
  2. [Deu36]
    M. Deuring, Automorphismen und Divisorklassen der Ordnung in algebraischen Funktionenkörpern. Math. Ann. 113, 208–215 (1936)CrossRefGoogle Scholar
  3. [Deu40]
    M. Deuring, Arithmetische Theorie der Korrespondenzen algebraischer Funktionenkörper. II. J. Reine Angew. Math. 183, 25–36 (1940)zbMATHGoogle Scholar
  4. [Deu41b]
    M. Deuring, La teoria aritmetica delle funzioni algebriche di una variabile. Rend. Mat. Appl. V. Ser. 2, 361–412 (1941)MathSciNetzbMATHGoogle Scholar
  5. [Has36c]
    H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I,II,III. J. Reine Angew. Math. 175, 55–62, 69–81, 193–207 (1936)Google Scholar
  6. [HW36]
    H. Hasse, E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrad p über einem algebraischen Funktionenkörper der Charakteristik p. Monatsh. Math. Phys. 43, 477–492 (1936)Google Scholar
  7. [Lef24]
    S. Lefschetz, L’analysis situs et la géométrie algébrique. Collection de monographies sur la théorie des fonctions. Paris: Gauthier-Villars, vi, 154 S. 8 (1924)Google Scholar
  8. [Wei40]
    A. Weil, Sur les fonctions algébriques à corps de constantes fini. C. R. Acad. Sci. Paris 210, 592–594 (1940)MathSciNetzbMATHGoogle Scholar
  9. [Wei41]
    A. Weil, On the Riemann hypothesis in function fields. Proc. Natl. Acad. Sci. USA 27, 345–347 (1941)CrossRefGoogle Scholar
  10. [Wei46]
    A. Weil, Foundations of Algebraic Geometry. Colloquium Publications, vol. XXIX (American Mathematical Society, Providence, RI, 1946)Google Scholar
  11. [Wei48a]
    A. Weil, Sur les courbes algébriques et les variétés qui s’en deduisent. Actualités scientifiques et industrielles, vol. 1048 (Hermann & Cie, Paris, 1948), 85 pp.Google Scholar
  12. [Wei48b]
    A. Weil, Variétés abéliennes et courbes algébriques, Actualités scientifiques et industrielles, vol. 1064 (Hermann & Cie, Paris, 1948), 163 pp.zbMATHGoogle Scholar
  13. [Wei56]
    A. Weil, Abstract versus classical algebraic geometry, in Proceedings of International Congress in Mathematics, Amsterdam 3, pp. 550–558 (1956)Google Scholar
  14. [Wei79a]
    A. Weil, Œuvres scientifiques. Collected papers. Vol. I (1926–1951). (Springer, Berlin, 1979)Google Scholar
  15. [Wei80]
    A Weil, Lettre à Artin (1942), in A. Weil, Collected Papers., vol. 1 (Springer, Berlin, 1980), pp. 280–298CrossRefGoogle Scholar
  16. [Wei91]
    A. Weil, Souvenirs d’apprentissage (Birkhäuser, Basel, 1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peter Roquette
    • 1
  1. 1.Mathematical InstituteHeidelberg UniversityHeidelbergGermany

Personalised recommendations