Advertisement

Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach

  • Jordi Badosa
  • Emmanuel Gobet
  • Maxime Grangereau
  • Daeyoung Kim
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 254)

Abstract

In this work, we derive a probabilistic forecast of the solar irradiance during a day at a given location, using a stochastic differential equation (SDE for short) model. We propose a procedure that transforms a deterministic forecast into a probabilistic forecast: the input parameters of the SDE model are the AROME numerical weather predictions computed at day \(D-1\) for the day D. The model also accounts for the maximal irradiance from the clear sky model. The SDE model is mean-reverting towards the deterministic forecast and the instantaneous amplitude of the noise depends on the clear sky index, so that the fluctuations vanish as the index is close to 0 (cloudy) or 1 (sunny), as observed in practice. Our tests show a good adequacy of the confidence intervals of the model with the measurement.

Keywords

Solar power Probabilistic forecast Stochastic differential equation 

Notes

Acknowledgements

This research is part of the Chair Financial Risks of the Risk Foundation, the Finance for Energy Market Research Centre and the ANR project CAESARS (ANR-15-CE05-0024). The work benefits from the support of the Siebel Energy Institute and it was conducted in the frame of the TREND-X research program of Ecole Polytechnique, supported by Fondation de l’Ecole Polytechnique. The authors acknowledge Météo-France and the Cosy project for the numerical weather prediction data used in the study.

References

  1. 1.
    R. Aïd, L. Campi, N. Langrené, H. Pham, A probabilistic numerical method for optimal multiple switching problem in high dimension. SIAM J. Financ. Math. 5(1), 191–231 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Aid, Electricity Derivatives. Springer Briefs in Quantitative Finance (Springer, Berlin, 2015)CrossRefGoogle Scholar
  3. 3.
    S. Alessandrini, L. Delle Monache, S. Sperati, G. Cervone, G. Cervone, An analog ensemble for short-term probabilistic solar power forecast. Appl. Energy 157, 95–110 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Badosa, M. Haeffelin, H. Chepfer, Scales of spatial and temporal variation of solar irradiance on Reunion tropical Island. Solar Energy 88, 42–56 (2013)CrossRefGoogle Scholar
  5. 5.
    B.M. Bibby, I.M. Skovgaard, M. Sorensen, Diffusion-type models with given marginal distribution and autocorrelation function. Bernoulli 11(2), 191–220 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R.E. Bird, R.L. Hulstrom, Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Technical report, Solar Energy Research Institute, Golden, CO (USA), 1981Google Scholar
  7. 7.
    M. Delfanti, D. Falabretti, M. Merlo, Energy storage for PV power plant dispatching. Renew. Energy 80, 61–72 (2015)CrossRefGoogle Scholar
  8. 8.
    H.M. Diagne, P. Lauret, M. David, Solar irradiation forecasting: state-of-the-art and proposition for future developments for small-scale insular grids, in WREF 2012-World Renewable Energy Forum (2012)Google Scholar
  9. 9.
    E. Gobet, LAN property for ergodic diffusion with discrete observations. Ann. Inst. H. Poincaré Probab. Statist. 38(5), 711–737 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Gobet, M. Grangereau, McKean optimal stochastic control of microgrid equipped with photo-voltaic panels and battery. Preprint (2018)Google Scholar
  11. 11.
    R. Hanna, J. Kleissl, A. Nottrott, M. Ferry, Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. Solar Energy 103, 269–287 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Heinemann, E. Lorenz, M. Girodo, Solar irradiance forecasting for the management of solar energy systems. Energy Meteorology Group, Oldenburg University, Energy and Semiconductor Research Laboratory, 2006Google Scholar
  13. 13.
    E.B. Iversen, J.M. Morales, J.K. Møller, H. Madsen, Probabilistic forecasts of solar irradiance using stochastic differential equations. Environmetrics 25(3), 152–164 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Kanchev, D. Lu, F. Colas, V. Lazarov, B. François, Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans. Sustain. Energy 58(10) (2011)CrossRefGoogle Scholar
  15. 15.
    I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd Edn. (Springer, Berlin, 1991)Google Scholar
  16. 16.
    M. Kessler, A. Lindner, M. Sorensen. Statistical Methods for Stochastic Differential Equations (CRC Press, Boca Raton, 2012)Google Scholar
  17. 17.
    J. Kleissl, Solar Energy Forecasting and Resource Assessment (Academic Press, London, 2013)Google Scholar
  18. 18.
    P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol. 23 (Springer, Berlin, 2010). 4th Corrected PrintingGoogle Scholar
  19. 19.
    C.B. Martinez-Anido, B. Botor, A.R. Florita, C. Draxl, S. Lu, H.F. Hamann, B.M. Hodge, The value of day-ahead solar power forecasting improvement. Solar Energy 129, 192–203 (2016)CrossRefGoogle Scholar
  20. 20.
    A.A. Mohammed, Z. Aung, Ensemble learning approach for probabilistic forecasting of solar power generation. Energies 9(12), 1017 (2016)CrossRefGoogle Scholar
  21. 21.
    K.D. Orwig, M.L. Ahlstrom, V. Banunarayanan, J. Sharp, J.M. Wilczak, J. Freedman, S.E. Haupt, J. Cline, O. Bartholomy, H.F. Hamann, B.M. Hodge, C. Finley, D. Nakafuji, J.L. Peterson, D. Maggio, M. Marquis, Recent trends in variable generation forecasting and its value to the power system. IEEE Trans. Sustain. Energy 6(3), 924–933 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Perez, E. Lorenz, S. Pelland, M. Beauharnois, G. Van Knowe, K. Hemker Jr., D. Heinemann, J. Remund, S.C. Müller, W. Traunmüller, G. Steinmauer, D. Prozo, J.A. Ruiz-Arias, V. Lara-Fanego, L. Ramirez-Santigosa, M. Gastin-Romero, L.M. Pomares, Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Solar Energy 94, 305–326 (2013)CrossRefGoogle Scholar
  23. 23.
    D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Comprehensive Studies in Mathematics, 3rd Edn. (Springer, Berlin, 1999)CrossRefGoogle Scholar
  24. 24.
    C.V.A. Silva, L. Lim, D. Stevens, D Nakafuji, Probabilistic models for one-day ahead solar irradiance forecasting in renewable energy applications, in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (IEEE, 2015), pp. 1163–1168Google Scholar
  25. 25.
    T. Soubdhan, R. Emilion, Stochastic differential equation for modeling global solar radiation sequences, in Proceedings of the IASTED International Conference: Modelling, Identification, and Control (AsiaMIC 2010) (2010), pp. 14–17Google Scholar
  26. 26.
    D. Talay, Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep. 29, 13–36 (1990)CrossRefGoogle Scholar
  27. 27.
    A. Tuohy, J. Zack, S.E. Haupt, J. Sharp, M. Ahlstrom, S. Dise, E. Grimit, C. Mohrlen, M. Lange, M.G. Casado, J. Black, M. Marquis, C. Collier, Solar forecasting: methods, challenges, and performance. IEEE Power Energy Mag. 13(6), 50–59 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jordi Badosa
    • 1
  • Emmanuel Gobet
    • 2
  • Maxime Grangereau
    • 2
  • Daeyoung Kim
    • 3
  1. 1.LMD/IPSL, Ecole PolytechniquePalaiseau CedexFrance
  2. 2.CMAP, Ecole PolytechniquePalaiseau CedexFrance
  3. 3.Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations