From Numerical Weather Prediction Outputs to Accurate Local Surface Wind Speed: Statistical Modeling and Forecasts

  • Bastien AlonzoEmail author
  • Riwal Plougonven
  • Mathilde Mougeot
  • Aurélie Fischer
  • Aurore Dupré
  • Philippe Drobinski
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 254)


Downscaling a meteorological quantity at a specific location from outputs of Numerical Weather Prediction models is a vast field of research with continuous improvement. The need to provide accurate forecasts of the surface wind speed at specific locations of wind farms has become critical for wind energy application. While classical statistical methods like multiple linear regression have been often used in order to reconstruct wind speed from Numerical Weather Prediction model outputs, machine learning methods, like Random Forests, are not as widespread in this field of research. In this paper, we compare the performances of two downscaling statistical methods for reconstructing and forecasting wind speed at a specific location from the European Center of Medium-range Weather Forecasts (ECMWF) model outputs. The assessment of ECMWF shows for 10 m wind speed displays a systematic bias, while at 100 m, the wind speed is better represented. Our study shows that both classical and machine learning methods lead to comparable results. However, the time needed to pre-process and to calibrate the models is very different in both cases. The multiple linear model associated with a wise pre-processing and variable selection shows performances that are slightly better, compared to Random Forest models. Finally, we highlight the added value of using past observed local information for forecasting the wind speed on the short term.


Local wind speed Downscaling Statistical modeling Numerical weather prediction model Wind speed forecasts 



This research was supported by the ANR project FOREWER (ANR-14-538 CE05-0028). This work also contributes to TREND-X program on energy transition at Ecole Polytechnique. The authors thank Côme De Lassus Saint Geniès and Medhi Kechiar who produced preliminary investigations for this study.


  1. 1.
    B. Alonzo, H. Ringkjob, B. Jourdier, P. Drobinski, R. Plougonven, P. Tankov, Modelling the variability of the wind energy resource on monthly and seasonal timescales. Renew. Energy 113, 1434–1446 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Breiman, Bagging predictors. Mach. Learn. 123–140 (1996)zbMATHGoogle Scholar
  4. 4.
    F. Cassola, M. Burlando, Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl. Energy 99, 154–166 (2012)CrossRefGoogle Scholar
  5. 5.
    R.J. Davy, M.J. Woods, C.J. Russell, P.A. Coppin, Statistical downscaling of wind variability from meteorological fields. Bound. Layer Meteorol. 175, 161–175 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Devis, N. van Lipzig, M. Demuzere, A new statistical approach to downscale wind speed distribution at a site in Northern Europe. J. Geophys. Res. Atmos. 118, 2272–2283 (2013)CrossRefGoogle Scholar
  7. 7.
    C.K. Folland, A.A. Scaife, J. Lindesay, D.B. Stephenson, How potentially predictable is Northern European winter climate a season ahead? Int. J. Climatol. 32, 801–818 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning. Springer Series in Statistics, vol. 1 (Springer, New York, 2001)Google Scholar
  9. 9.
    M.G.D. Giorgi, A. Ficarella, M. Tarantino, Assessment of the benets of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36, 3968–3978 (2011)CrossRefGoogle Scholar
  10. 10.
    H.R. Glahn, D.A. Lowry, The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11, 1203–1211 (1972)CrossRefGoogle Scholar
  11. 11.
    GWEC, Global wind statistics (2016)Google Scholar
  12. 12.
    M. Haeffelin, L. Barthes, O. Bock, C. Boitel, S. Bony, D. Bouniol, H. Chepfer, M. Chiriaco, J. Cuesta, J. Delanoe, P. Drobinski, J.-L. Dufresne, C. Flamant, M. Grall, A. Hodzic, F. Hourdin, F. Lapouge, Y. Lemaitre, A. Mathieu, Y. Morille, C. Naud, V. Noel, W. OHirok, J. Pelon, C. Pietras, A. Protat, B. Romand, G. Scialom, R. Vautard, SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys. 23, 1–23 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Howard, P. Clark, Correction and downscaling of NWP wind speed forecasts. Meteorol. Appl. 14, 105–116 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Jung, R.P. Broadwater, Current status and future advances for wind speed and powerforecasting. Renew. Sustain. Energy Rev. 31, 762–777 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003)Google Scholar
  16. 16.
    M.L. Kubik, P.J. Coker, C. Hunt, Using meteorological wind data to estimate turbine generation output: a sensitivity analysis, in Proceedings of Renewable Energy Congress (2011), pp. 4074–4081Google Scholar
  17. 17.
    D. Maraun, F. Wetterhall, M. Ireson, E. Chandler, J. Kendon, M. Widmann, S. Brienen, H.W. Rust, T. Sauter, M. Themel, V.K.C. Venema, K.P. Chun, C.M. Goodess, R.G. Jones, C. Onof, M. Vrac, I. ThieleEich, Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48, RG3003 (2010)Google Scholar
  18. 18.
    M. Mohandes, S. Rehmanb, S. Rahmand, Estimation of wind speed prole using adaptive neuro-fuzzy inference system (ANFIS). Appl. Energy 88, 4024–4032 (2011)CrossRefGoogle Scholar
  19. 19.
    RTE, Annual electricity report (2016)Google Scholar
  20. 20.
    T. Salameh, P. Drobinski, M. Vrac, P. Naveau, Statistical downscaling of near-surface wind over complex terrain in Southern France. Meteorol. Atmos. Phys. 103, 253–265 (2009)CrossRefGoogle Scholar
  21. 21.
    S.S. Soman, H. Zareipour, O. Malik, O., and P. Mandal, A review of wind power and wind speed forecasting methods with different time horizons. In North American power symposium (NAPS) (2010), pp. 1–8Google Scholar
  22. 22.
    R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  24. 24.
    N.S. Wagenbrenner, J.M. Forthofer, B.K. Lamb, K.S. Shannon, B.W. Butler, Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys. 16, 5229–5241 (2016)CrossRefGoogle Scholar
  25. 25.
    R.L. Wilby, C.W. Dawson, The statistical downscaling model: insights from one decade of application. Int. J. Climatol. 33, 1707–1719 (2013)CrossRefGoogle Scholar
  26. 26.
    R.L. Wilby, T.M.L. Wigley, D. Conway, P.D. Jones, B. Hewitson, J. Main, D.S. Wilks, Statistical downscaling of general circulation model output: a comparison of methods. Water Resour. Res. 34, 2995–3008 (1998)CrossRefGoogle Scholar
  27. 27.
    M. Zamo, L. Bel, O. Mestre, J. Stein, Improved gridded wind speed forecasts by statistical postprocessing of numerical models with block regression. Weather Forecast. 31, 1929–1945 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bastien Alonzo
    • 1
    Email author
  • Riwal Plougonven
    • 1
  • Mathilde Mougeot
    • 2
  • Aurélie Fischer
    • 2
  • Aurore Dupré
    • 1
  • Philippe Drobinski
    • 1
  1. 1.LMD/IPSL, École PolytechniqueUniversité Paris Saclay, ENS, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, CNRSPalaiseauFrance
  2. 2.Laboratoire de Probabilités, Statistique et ModélisationUniversité Paris Diderot - Paris 7ParisFrance

Personalised recommendations