Advertisement

Friction-Free Quantum Machines

  • Adolfo del CampoEmail author
  • Aurélia Chenu
  • Shujin Deng
  • Haibin Wu
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

The operation of a quantum heat engine in finite time generally faces a trade-off between efficiency and power. Using shortcuts to adiabaticity (STA), this trade off can be avoided to engineer thermal machines that operate at maximum efficiency and tunable output power. We demonstrate the use of STA to engineer a scalable superadiabatic quantum Otto cycle and report recent experimental progress to tailor quantum friction in finite-time quantum thermodynamics. In the presence of quantum friction, it is also shown that the use of a many-particle working medium can boost the performance of the quantum machines with respect to an ensemble of single-particle thermal machines.

Notes

Acknowledgements

This chapter reports on joint work with Shuoming An, Mathieu Beau, Cyril Chatou, Ivan Coulamy, Pengpeng Diao, Ken Funo, John Goold, Juan Diego Jaramillo, Kihwan Kim, Fang Li, Mauro Paternostro, Marek M. Rams, Masahito Ueda, Shi Yu and Jing-Ning Zhang, and Wojciech H. Zurek. It has further benefited from discussions with Obinna Abah, Sebastian Deffner, Luis Pedro García-Pintos, Fernando J. Gómez-Ruiz, Jiangbin Gong, Christopher Jarzynski, Ronnie Kosloff, Peter Hänggi, Eric Lutz, Doha M. Mesnaoui, Victor Mukherjee, José Pascual Palao, Dario Poletti, Stuart A. Rice, Peter Talkner, B. Prasanna Venkatesh, Gentaro Watanabe, and Zhenyu Xu. We acknowledge funding support from the John Templeton Foundation, and UMass Boston (project P20150000029279).

References

  1. 1.
    I. Prigogine, I. Stengers, Order out of chaos (Verso Books, London, 1984)Google Scholar
  2. 2.
    J. Gemmer, G. Mahler, M. Michel, Quantum Thermo- dynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems, LNP 657 (Springer, Berlin, 2004).  https://doi.org/10.1007/b98082
  3. 3.
    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016).  https://doi.org/10.1080/00107514.2016.1201896ADSCrossRefGoogle Scholar
  4. 4.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001ADSCrossRefGoogle Scholar
  5. 5.
  6. 6.
    R. Kosloff, J. Chem. Phys. 80, 1625 (1984).  https://doi.org/10.1063/1.446862ADSCrossRefGoogle Scholar
  7. 7.
    H.S. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Institute of Physics, Bristol, 2003)Google Scholar
  8. 8.
    S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011).  https://doi.org/10.1103/PhysRevLett.106.070401ADSCrossRefGoogle Scholar
  9. 9.
    H. Scovil, E. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959).  https://doi.org/10.1103/PhysRevLett.2.262ADSCrossRefGoogle Scholar
  10. 10.
    K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, PNAS 110, 2751 (2013).  https://doi.org/10.1073/pnas.1212666110ADSCrossRefGoogle Scholar
  11. 11.
    M.O. Scully, Phys. Rev. Lett. 104, 207701 (2010).  https://doi.org/10.1103/PhysRevLett.104.207701ADSCrossRefGoogle Scholar
  12. 12.
    M.O. Scully, K.R. Chapin, K.E. Dorfman, M. Barnabas Kim, A. Svidzinsky, PNAS 108, 15097 (2011).  https://doi.org/10.1073/pnas.1110234108
  13. 13.
    C. Creatore, M.A. Parker, S. Emmott, A.W. Chin, Phys. Rev. Lett. 111, 253601 (2013).  https://doi.org/10.1103/PhysRevLett.111.253601ADSCrossRefGoogle Scholar
  14. 14.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975).  https://doi.org/10.1119/1.10023ADSCrossRefGoogle Scholar
  15. 15.
    R.S. Berry, V. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite-Time Processes, 1st edn. (Wiley, New York, 2000)Google Scholar
  16. 16.
    P. Salamon, J. Nulton, G. Siragusa, T.R. Andersen, A. Limon, Energy 26, 307 (2001).  https://doi.org/10.1016/S0360-5442(00)00059-1CrossRefGoogle Scholar
  17. 17.
    E. Geva, R. Kosloff, J. Chem. Phys. 96, 3054 (1992).  https://doi.org/10.1063/1.461951ADSCrossRefGoogle Scholar
  18. 18.
    R. Kosloff, T. Feldmann, Phys. Rev. E 65, 055102(R) (2002).  https://doi.org/10.1103/PhysRevE.65.055102ADSCrossRefGoogle Scholar
  19. 19.
    T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003).  https://doi.org/10.1103/PhysRevE.68.016101ADSCrossRefGoogle Scholar
  20. 20.
    Y. Rezek, R. Kosloff, New J. Phys. 8, 83 (2006).  https://doi.org/10.1088/1367-2630/8/5/083ADSCrossRefGoogle Scholar
  21. 21.
    P. Salamon, K.H. Hoffmann, Y. Rezek, R. Kosloff, Phys. Chem. Chem. Phys. 11, 1027 (2009).  https://doi.org/10.1039/B816102JCrossRefGoogle Scholar
  22. 22.
    Y. Rezek, P. Salamon, K.H. Hoffmann, R. Kosloff, EPL 85, 30008 (2009).  https://doi.org/10.1209/0295-5075/85/30008ADSCrossRefGoogle Scholar
  23. 23.
    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).  https://doi.org/10.1103/PhysRevLett.109.203006
  24. 24.
  25. 25.
    J. Deng, Q. Wang, Z. Liu, P. Hänggi, J. Gong, Phys. Rev. E 88, 062122 (2013).  https://doi.org/10.1103/PhysRevE.88.062122ADSCrossRefGoogle Scholar
  26. 26.
    A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014).  https://doi.org/10.1038/srep06208ADSCrossRefGoogle Scholar
  27. 27.
    M. Beau, J. Jaramillo, A. del Campo, Entropy 18, 168 (2016).  https://doi.org/10.3390/e18050168ADSCrossRefGoogle Scholar
  28. 28.
    L. Chotorlishvili, M. Azimi, S. Stagraczyński, Z. Toklikishvili, M. Schüler, J. Berakdar, Phys. Rev. E 94, 032116 (2016).  https://doi.org/10.1103/PhysRevE.94.032116ADSCrossRefGoogle Scholar
  29. 29.
  30. 30.
    S. Deng, A. Chenu, P. Diao, F. Li, S. Yu, I. Coulamy, A. del Campo, H. Wu, Sci. Adv. 4, eaar5909 (2018).  https://doi.org/10.1126/sciadv.aar5909
  31. 31.
    J. Li, T. Fogarty, S. Campbell, X. Chen, T. Busch, New J. Phys. 20, 015005 (2018).  https://doi.org/10.1088/1367-2630/aa9cd8
  32. 32.
    E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, J.G. Muga, Adv. At. Mol. Opt. Phys. 62, 117 (2013).  https://doi.org/10.1016/B978-0-12-408090-4.00002-5ADSCrossRefGoogle Scholar
  33. 33.
    J. Jaramillo, M. Beau, A. del Campo, New J. Phys. 18, 075019 (2016).  https://doi.org/10.1088/1367-2630/18/7/075019ADSCrossRefGoogle Scholar
  34. 34.
    Y. Zheng, D. Poletti, Phys. Rev. E 92, 012110 (2015).  https://doi.org/10.1103/PhysRevE.92.012110ADSCrossRefGoogle Scholar
  35. 35.
    J. Bengtsson, M. Nilsson Tengstrand, A. Wacker, P. Samuelsson, M. Ueda, H. Linke, S.M. Reimann, Phys. Rev. Lett. 120, 100601 (2018).  https://doi.org/10.1103/PhysRevLett.120.100601ADSCrossRefGoogle Scholar
  36. 36.
    P.J. Gambardella, J. Math. Phys. 16, 1172 (1975).  https://doi.org/10.1063/1.522651ADSCrossRefGoogle Scholar
  37. 37.
    A. del Campo, Phys. Rev. A 84, 031606(R) (2011).  https://doi.org/10.1103/PhysRevA.84.031606ADSCrossRefGoogle Scholar
  38. 38.
    A. del Campo, M.G. Boshier, Sci. Rep. 2, 648 (2012).  https://doi.org/10.1038/srep00648CrossRefGoogle Scholar
  39. 39.
    A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).  https://doi.org/10.1103/PhysRevLett.111.100502CrossRefGoogle Scholar
  40. 40.
    S. Deffner, C. Jarzynski, A. del Campo, Phys. Rev. X 4, 021013 (2014).  https://doi.org/10.1103/PhysRevX.4.021013CrossRefGoogle Scholar
  41. 41.
    K. Husimi, Prog. Theor. Phys. 9, 381 (1953).  https://doi.org/10.1143/ptp/9.4.381ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    R. Kosloff, Y. Rezek, Entropy 19, 136 (2017).  https://doi.org/10.3390/e19040136ADSCrossRefGoogle Scholar
  43. 43.
    X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, J.G. Muga, Phys. Rev. Lett. 104, 063002 (2010).  https://doi.org/10.1103/PhysRevLett.104.063002ADSCrossRefGoogle Scholar
  44. 44.
  45. 45.
    K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043030 (2009).  https://doi.org/10.1088/1367-2630/11/4/043030ADSCrossRefGoogle Scholar
  46. 46.
    T.A. Bell, J.A.P. Glidden, L. Humbert, M.W.J. Bromley, S.A. Haine, M.J. Davis, T.W. Neely, M.A. Baker, H. Rubinsztein-Dunlop, New J. Phys. 18, 035003 (2016).  https://doi.org/10.1088/1367-2630/18/3/035003ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    G. Gauthier, I. Lenton, N. McKay Parry, M. Baker, M.J. Davis, H. Rubinsztein-Dunlop, T.W. Neely, Optica 3, 1136 (2016).  https://doi.org/10.1364/OPTICA.3.001136CrossRefGoogle Scholar
  48. 48.
    S. Deng, P. Diao, Q. Yu, A. del Campo, H. Wu, Phys. Rev. A 97, 013628 (2018).  https://doi.org/10.1103/PhysRevA.97.013628ADSCrossRefGoogle Scholar
  49. 49.
    Y. Castin, F. Werner, The BCS-BEC Crossover and the Unitary Fermi Gas. Lecture Notes in Physics, vol. 836, ed. by W. Zwerger (Springer, Berlin, 2012).  https://doi.org/10.1007/978-3-642-21978-8
  50. 50.
    M. Demirplak, S.A. Rice, J. Phys. Chem. A 107, 9937 (2003).  https://doi.org/10.1021/jp030708aCrossRefGoogle Scholar
  51. 51.
    M. Demirplak, S.A. Rice, J. Phys. Chem. B 109, 6838 (2005).  https://doi.org/10.1021/jp040647wCrossRefGoogle Scholar
  52. 52.
    M.V. Berry, J. Phys. A: Math. Theor. 42, 365303 (2009).  https://doi.org/10.1088/1751-8113/42/36/365303
  53. 53.
    M.V. Berry, Proc. R. Soc. Lond. 392, 45 (1984).  https://doi.org/10.1098/rspa.1984.0023ADSCrossRefGoogle Scholar
  54. 54.
    M.G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, O. Morsch, Nat. Phys. 8, 147 (2012).  https://doi.org/10.1038/nphys2170CrossRefGoogle Scholar
  55. 55.
    J. Zhang, J. Hyun Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya, D. Suter, Phys. Rev. Lett. 110, 240501 (2013).  https://doi.org/10.1103/PhysRevLett.110.240501ADSCrossRefGoogle Scholar
  56. 56.
    Y.-X. Du, Z.-T. Liang, Y.-C. Li, X.-X. Yue, Q.-X. Lv, W. Huang, X. Chen, H. Yan, S.-L. Zhum, Nat. Commun. 7, 12479 (2016).  https://doi.org/10.1038/ncomms12479ADSCrossRefGoogle Scholar
  57. 57.
    S. An, S. Lv, A. del Campo, K. Kim, Nat. Commun. 7, 12999 (2016).  https://doi.org/10.1038/ncomms12999ADSCrossRefGoogle Scholar
  58. 58.
    A. del Campo, M.M. Rams, W.H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).  https://doi.org/10.1103/PhysRevLett.109.115703ADSCrossRefGoogle Scholar
  59. 59.
    A. del Campo, W.H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014).  https://doi.org/10.1142/S0217751X1430018XCrossRefGoogle Scholar
  60. 60.
    M. Demirplak, S.A. Rice, J. Chem. Phys. 129, 154111 (2008).  https://doi.org/10.1063/1.2992152ADSCrossRefGoogle Scholar
  61. 61.
    Y. Zheng, S. Campbell, G. De Chiara, D. Poletti, Phys. Rev. A 94, 042132 (2016).  https://doi.org/10.1103/PhysRevA.94.042132ADSCrossRefGoogle Scholar
  62. 62.
    S. Campbell, S. Deffner, Phys. Rev. Lett. 118, 100601 (2017).  https://doi.org/10.1103/PhysRevLett.118.100601ADSCrossRefGoogle Scholar
  63. 63.
    S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).  https://doi.org/10.1142/S0217979210056335ADSCrossRefGoogle Scholar
  64. 64.
    K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, A. del Campo, Phys. Rev. Lett. 118, 100602 (2017).  https://doi.org/10.1103/PhysRevLett.118.100602ADSCrossRefGoogle Scholar
  65. 65.
    A. Bravetti, D. Tapias, Phys. Rev. E 96, 052107 (2017).  https://doi.org/10.1103/PhysRevE.96.052107ADSCrossRefGoogle Scholar
  66. 66.
    H. Tasaki, (2000), arXiv:cond-mat/0009244
  67. 67.
    J. Kurchan, (2000), arXiv:cond-mat/0007360
  68. 68.
    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011).  https://doi.org/10.1103/RevModPhys.83.771ADSCrossRefGoogle Scholar
  69. 69.
    P. Provost, G. Vallee, Commun. Math. Phys. 76, 289 (1980).  https://doi.org/10.1007/BF02193559ADSCrossRefGoogle Scholar
  70. 70.
    Z. Zhang, T. Wang, L. Xiang, Z. Jia, P. Duan, W. Cai, Z. Zhan, Z. Zong, J. Wu, L. Sun, Y. Yin, G. Guo, New J. Phys. 20, 085001 (2018).  https://doi.org/10.1088/1367-2630/aad4e7
  71. 71.
    A. Levy, A. Kiely, J.G. Muga, R. Kosloff, E. Torrontegui, New J. Phys. 20, 025006 (2018).  https://doi.org/10.1088/1367-2630/aaa9e5ADSCrossRefGoogle Scholar
  72. 72.
    F. Calogero, J. Math. Phys. 12, 419 (1971).  https://doi.org/10.1063/1.1665604ADSCrossRefGoogle Scholar
  73. 73.
    B. Sutherland, J. Math. Phys. 12, 246 (1971).  https://doi.org/10.1063/1.1665584ADSCrossRefGoogle Scholar
  74. 74.
    M.D. Girardeau, J. Math. Phys. 1, 516 (1960).  https://doi.org/10.1063/1.1703687ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    M.D. Girardeau, E.M. Wright, J.M. Triscari, Phys. Rev. A 63, 033601 (2001).  https://doi.org/10.1103/PhysRevA.63.033601ADSCrossRefGoogle Scholar
  76. 76.
  77. 77.
    Y.-S. Wu, Phys. Rev. Lett. 73, 922 (1994).  https://doi.org/10.1103/PhysRevLett.73.922ADSCrossRefGoogle Scholar
  78. 78.
    M.V.N. Murthy, R. Shankar, Phys. Rev. Lett. 73, 3331 (1994).  https://doi.org/10.1103/PhysRevLett.73.3331ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    M. Campisi, R. Fazio, Nat. Commun. 7, 11895 (1016).  https://doi.org/10.1038/ncomms11895ADSCrossRefGoogle Scholar
  80. 80.
    N. Yunger Halpern, C. David White, S. Gopalakrishnan, G. Refael, Phys. Rev. B 99, 024203 (2019).  https://doi.org/10.1103/PhysRevB.99.024203
  81. 81.
    G. Watanabe, B.P. Venkatesh, P. Talkner, A. del Campo, Phys. Rev. Lett. 118, 050601 (2017).  https://doi.org/10.1103/PhysRevLett.118.050601ADSCrossRefGoogle Scholar
  82. 82.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 325 (2016).  https://doi.org/10.1126/science.aad6320ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    J.P.S. Peterson, T.B. Batalhão, M. Herrera, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra (2018), arXiv:1803.06021
  84. 84.
    K.Y. Tan, M. Partanen, R.E. Lake, J. Govenius, S. Masuda, M. Möttönen, Nat. Commun. 8, 15189 (2017).  https://doi.org/10.1038/ncomms15189ADSCrossRefGoogle Scholar
  85. 85.
    G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich (2017).  https://doi.org/10.1038/s41467-018-08090-0
  86. 86.
    I.A. Martínez, E. Roldán, L. Dinis, R.A. Rica, Soft Matter 13, 22 (2017).  https://doi.org/10.1039/C6SM00923AADSCrossRefGoogle Scholar
  87. 87.
    L. Gilz, E.P. Thesing, J.R. Anglin, Phys. Rev. E 94, 042127 (2016).  https://doi.org/10.1103/PhysRevE.94.042127
  88. 88.
    C. Teo, U. Bissbort, D. Poletti, Phys. Rev. E 95, 030102(R) (2017).  https://doi.org/10.1103/PhysRevE.95.030102ADSCrossRefGoogle Scholar
  89. 89.
    M.T. Mitchison, M. Huber, J. Prior, M.P. Woods, M.B. Plenio, Quantum Sci. Technol. 1, 015001 (2016).  https://doi.org/10.1088/2058-9565/1/1/015001ADSCrossRefGoogle Scholar
  90. 90.
    A. Roulet, S. Nimmrichter, J.M. Arrazola, S. Seah, V. Scarani, Phys. Rev. E 95, 062131 (2017).  https://doi.org/10.1103/PhysRevE.95.062131ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adolfo del Campo
    • 1
    • 2
    Email author
  • Aurélia Chenu
    • 2
  • Shujin Deng
    • 3
  • Haibin Wu
    • 3
  1. 1.Department of PhysicsUniversity of MassachusettsBostonUSA
  2. 2.Theory DivisionLos Alamos National Laboratory, MS-B213Los AlamosUSA
  3. 3.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations