Advertisement

NV Color Centers in Diamond as a Platform for Quantum Thermodynamics

  • Nir Bar-GillEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Nitrogen-vacancy (NV) color centers in diamond constitute a unique system for experimental quantum thermodynamic research. The NV is a quantum spin (exhibiting millisecond-scale coherence times at room temperature) within a solid structure, surrounded naturally by both an electronic spin bath (nitrogen impurities) and a nuclear spin bath (\({}^{13}\mathrm{C}\) isotopes). The optical access offered by the NV in terms of spin-state readout and initialization (cooling), together with its versatile microwave control, provides a rich platform for experiments in quantum thermodynamics. We present the NV system, detail core schemes for spin manipulation and bath cooling, and describe future prospects.

Notes

Acknowledgements

I gratefully acknowledge insights and valuable discussions with Ronald Walsworth, Chinmay Belthangady, Linh Pham, Fedor Jelezko, Paz London, Alex Retzker, Yonatan Hovav, Boris Naydenov and Demitry Farfurnik. I acknowledge support from the Minerva ARCHES award, the EU ERC Starting Grant (Project ID: 714005), the CIFAR-Azrieli Global Scholars program, Israel Ministry of Science, Technology and Space, and the Israel Science Foundation (Grant No. 750/14).

References

  1. 1.
    M.W. Doherty, N.B. Manson, P. Delaney, J. Jelezko, L. Wrachtrup, L. Hollenberg, Phys. Rep. 528(1) (2013).  https://doi.org/10.1016/j.physrep.2013.02.001
  2. 2.
    J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4 810 (2008).  https://doi.org/10.1038/nphys1075
  3. 3.
    J. Klatzow, J.N. Becker, P.M. Ledingham, C. Weinzetl, K.T. Kaczmarek, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, arXiv:1710.08716
  4. 4.
    A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, P. Maletinsky, Nat. Phys. 11, 820 (2015).  https://doi.org/10.1038/nphys3411
  5. 5.
    D.D.B. Rao, S.A. Momenzadeh, J. Wrachtrup, Phys. Rev. Lett. 117, 077203 (2016).  https://doi.org/10.1103/PhysRevLett.117.077203
  6. 6.
    M.J.A. Schuetz, E.M. Kessler, G. Giedke, L.M.K. Vandersypen, M.D. Lukin, J.I. Cirac, Phys. Rev. X 5, 031031 (2015).  https://doi.org/10.1103/PhysRevX.5.031031
  7. 7.
    D.A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K.A. Stewart, H. Wang, Phys. Rev. X 6, 041060 (2016).  https://doi.org/10.1103/PhysRevX.6.041060
  8. 8.
    M. Kolá, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012).  https://doi.org/10.1103/PhysRevLett.109.090601
  9. 9.
    A. Levy, R. Alicki, R. Kosloff, Phys. Rev. E 85, 061126 (2012).  https://doi.org/10.1103/PhysRevE.85.061126
  10. 10.
    W.-L. Ma, G. Wolfowicz, N. Zhao, S.-S. Li, J.J.L. Morton, R.-B. Liu, Nat. Commun. 5, 4822 (2014).  https://doi.org/10.1038/ncomms5822
  11. 11.
    F. Reinhard, F. Shi, N. Zhao, F. Rempp, B. Naydenov, J. Meijer, L.T. Hall, L. Hollenberg, J. Du, R.-B. Liu, J. Wrachtrup, Phys. Rev. Lett. 108, 200402 (2012).  https://doi.org/10.1103/PhysRevLett.108.200402
  12. 12.
    B. Smeltzer, L. Childress, A. Gali, New J. Phys. 13, 025021 (2011).  https://doi.org/10.1088/1367-2630/13/2/025021
  13. 13.
    E. Reynhardt, G. High, Prog. Nucl. Magn. Reson. Spectrosc. 38, 37 (2001).  https://doi.org/10.1016/S0079-6565(00)00025-X
  14. 14.
    A. Jarmola, V.M. Acosta, K. Jensen, S. Chemerisov, D. Budker, Phys. Rev. Lett. 108(197601) (2012).  https://doi.org/10.1103/PhysRevLett.108.197601
  15. 15.
    C. Belthangady, N. Bar-Gill, L.M. Pham, K. Arai, D. Le Sage, P. Cappellaro, R.L. Walsworth, Phys. Rev. Lett. 110, 157601 (2013).  https://doi.org/10.1103/PhysRevLett.110.157601
  16. 16.
    E.L. Hahn, Phys. Rev. 80, 580 (1950).  https://doi.org/10.1103/PhysRev.80.580
  17. 17.
    M. Poggio, H.J. Mamin, C.L. Degen, M.H. Sherwood, D. Rugar, Phys. Rev. Lett. 102, 087604 (2009).  https://doi.org/10.1103/PhysRevLett.102.087604
  18. 18.
    E.C. Reynhardt, G.L. High, J. Chem. Phys. 109, 4100 (1998).  https://doi.org/10.1063/1.477010
  19. 19.
    C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, Heidelberg, 1990).  https://doi.org/10.1007/978-3-662-09441-9
  20. 20.
    H. Brunner, R.H. Fritsch, K.H. Hausser, Zeitschrift für Naturforschung. J. phys. Sci. 42, 1456 (1987)Google Scholar
  21. 21.
    A. Henstra, W.T. Wenckebach, Mol. Phys. 106, 859 (2008).  https://doi.org/10.1080/00268970801998262
  22. 22.
    P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M.B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L.P. McGuinness, B. Naydenov, F. Jelezko, Phys. Rev. Lett. 111, 067601 (2013).  https://doi.org/10.1103/PhysRevLett.111.067601
  23. 23.
    J. Scheuer, I. Schwartz, Q. Chen, D. Schulze-Sünninghausen, P. Carl, P. Höfer, A. Retzker, H. Sumiya, J. Isoya, B. Luy, M.B. Plenio, B. Naydenov, F. Jelezko, New J. Phys. 18, 013040 (2016).  https://doi.org/10.1088/1367-2630/18/1/013040
  24. 24.
    R. Fischer, C.O. Bretschneider, P. London, D. Budker, D. Gershoni, L. Frydman, Phys. Rev. Lett. 111, 057601 (2013).  https://doi.org/10.1103/PhysRevLett.111.057601
  25. 25.
    G.A. Álvarez, C.O. Bretschneider, R. Fischer, P. London, H. Kanda, S. Onoda, J. Isoya, D. Gershoni, L. Frydman, Nat. Commun. 6, 8456 (2015).  https://doi.org/10.1038/ncomms9456
  26. 26.
    Y. Hovav, B. Naydenov, F. Jelezko, N. Bar-Gill, Phys. Rev. Lett. 120, 060405 (2018).  https://doi.org/10.1103/PhysRevLett.120.060405
  27. 27.
    J.M. Vinther, A.B. Nielsen, M. Bjerring, E.R.H. van Eck, A.P.M. Kentgens, N. Khaneja, N.C. Nielsen, J. Chem. Phys. 137, 214202 (2012).  https://doi.org/10.1063/1.4768953
  28. 28.
    J.M. Vinther, N. Khaneja, N.C. Nielsen, J. Magn. Reson. 226, 88 (2013).  https://doi.org/10.1016/j.jmr.2012.11.003
  29. 29.
    S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958).  https://doi.org/10.1063/1.1716296
  30. 30.
    S.J. DeVience, L.M. Pham, I. Lovchinsky, A.O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, R.L. Walsworth, Nat. Nanotechnol. 10, 129 (2015).  https://doi.org/10.1038/nnano.2014.313
  31. 31.
    A. Ajoy, U. Bissbort, M.D. Lukin, R.L. Walsworth, P. Cappellaro, Phys. Rev. X 5, 011001 (2015).  https://doi.org/10.1103/PhysRevX.5.011001
  32. 32.
    D.D.B. Rao, D. Gelbwaser-Klimovsky, A. Ghosh, N. Bar-Gill, G. Kurizki, In Preparation (2018)Google Scholar
  33. 33.
    R.H. Dicke, Phys. Rev. 93, 99 (1954).  https://doi.org/10.1103/PhysRev.93.99
  34. 34.
    G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer, Phys. Rev. Lett. 117, 043001 (2016).  https://doi.org/10.1103/PhysRevLett.117.043001
  35. 35.
    S. Pezzagna, D. Rogalla, H.-W. Becker, I. Jakobi, F. Dolde, B. Naydenov, J. Wrachtrup, F. Jelezko, C. Trautmann, J. Meijer, Physica Status Solidi (a) 208, 2017 ( 2011).  https://doi.org/10.1002/pssa.201100455
  36. 36.
    A. Ajoy, P. Cappellaro, Phys. Rev. Lett. 110, 220503 (2013).  https://doi.org/10.1103/PhysRevLett.110.220503
  37. 37.
    Y. Lin, J.P. Gaebler, F. Reiter, T.R. Tan, R. Bowler, A.S. Sørensen, D. Leibfried, D.J. Wineland, Nature 504, 415 (2013).  https://doi.org/10.1038/nature12801
  38. 38.
    S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, A. Narla, U. Vool, S.M. Girvin, L. Frunzio, M. Mirrahimi, M.H. Devoret, Nature 504, 419 (2013).  https://doi.org/10.1038/nature12802
  39. 39.
    N.Y. Yao, C.R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E.A. Demler, M.D. Lukin, Phys. Rev. Lett. 113, 243002 (2014).  https://doi.org/10.1103/PhysRevLett.113.243002

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Applied Physics and PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations