Advertisement

Quantum Features and Signatures of Quantum Thermal Machines

  • Amikam LevyEmail author
  • David Gelbwaser-Klimovsky
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

The aim of this book chapter is to indicate how quantum phenomena are affecting the operation of microscopic thermal machines, such as engines and refrigerators. As converting heat to work is one of the fundamental concerns in thermodynamics, the platform of quantum thermal machines sheds light on thermodynamics in the quantum regime. This chapter focuses on the basic features of quantum mechanics, such as energy quantization, the uncertainty principle, quantum coherence and correlations, and their manifestation in microscopic thermal devices. In addition to indicating the peculiar behaviors of thermal-machines due to their non-classical aspects, we present quantum-thermodynamic signatures of these machines. Any violation of the classical thermodynamic bounds observed in the outcome of measurements on theses machines is a sufficient condition to conclude that quantum effects are present in the operation of that thermal machine. Experimental setups demonstrating some of these results are also presented.

Notes

Acknowledgements

We thank R. Kosloff, R. Uzdin, D. Jennings, M. Lostaglio, D. Jasrasaria, A. Bylinskii, D. Gangloff, R. Islam, A. Aspuru-Guzik and V. Vuletic for useful comments and for sharing their wisdom. We also acknowledge J. Klatzow, J. N. Becker and E. Poem. for sharing their experimental results and preparing Fig. 4.7.

References

  1. 1.
    W.B. Case, Am. J. Phys. 76, 937 (2008).  https://doi.org/10.1119/1.2957889
  2. 2.
    E. Wigner, Phys. Rev. 40, 749 (1932).  https://doi.org/10.1103/PhysRev.40.749
  3. 3.
    V. Sundar, D. Gelbwaser-Klimovsky, A. Aspuru-Guzik (2017), arXiv:1712.06649
  4. 4.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  5. 5.
    D. Gelbwaser-Klimovsky, A. Bylinskii, D. Gangloff, R. Islam, A. Aspuru-Guzik, V. Vuletic, Phys. Rev. Lett. 120, 170601 (2018).  https://doi.org/10.1103/PhysRevLett.120.170601
  6. 6.
    H. Quan, Y.-X. Liu, C. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007).  https://doi.org/10.1103/PhysRevE.76.031105
  7. 7.
    Y. Zheng, D. Poletti, Phys. Rev. E 90, 012145 (2014).  https://doi.org/10.1103/PhysRevE.90.012145
  8. 8.
    D.J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press, Cambridge, 2016)Google Scholar
  9. 9.
    R.J. Farris, Rubber Chem. Technol. 52, 159 (1979).  https://doi.org/10.5254/1.3535199
  10. 10.
    J. Mullen, G.W. Look, J. Konkel, Am. J. Phys. 43, 349 (1975).  https://doi.org/10.1119/1.9852
  11. 11.
    S. Paolucci, Continuum Mechanics and Thermodynamics of Matter (Cambridge University Press, Cambridge, 2016).  https://doi.org/10.1017/CBO9781316106167
  12. 12.
    M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, Cambridge, 2010).  https://doi.org/10.1017/CBO9780511762956
  13. 13.
    H.T. Quan, Phys. Rev. E 79, 041129 (2009).  https://doi.org/10.1103/PhysRevE.79.041129
  14. 14.
    R. Kosloff, Y. Rezek, Entropy 19, 136 (2017).  https://doi.org/10.3390/e19040136
  15. 15.
    Y. Zheng, D. Poletti, Phys. Rev. E 92, 012110 (2015).  https://doi.org/10.1103/PhysRevE.92.012110
  16. 16.
    R. Uzdin, R. Kosloff, New J. Phys. 16, 095003 (2014).  https://doi.org/10.1088/1367-2630/16/9/095003
  17. 17.
    H. Quan, P. Zhang, C. Sun, Phys. Rev. E 72, 056110 (2005).  https://doi.org/10.1103/PhysRevE.72.056110
  18. 18.
    W. Coffey, Y.P. Kalmykov, S. Titov, B. Mulligan, Phys. Chem. Chem. Phys. 9, 3361 (2007).  https://doi.org/10.1039/B614554J
  19. 19.
    R. Brown, E. Ott, C. Grebogi, J. Stat. Phys. 49, 511 (1987).  https://doi.org/10.1007/BF01009347
  20. 20.
    A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys. 89, 041003 (2017).  https://doi.org/10.1103/RevModPhys.89.041003
  21. 21.
    D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, Chem. Sci. 8, 1008 (2017).  https://doi.org/10.1039/C6SC04350J
  22. 22.
    M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6 (2015).  https://doi.org/10.1038/ncomms7383
  23. 23.
    K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, New J. Phys. 18, 023045 (2016).  https://doi.org/10.1088/1367-2630/18/2/023045
  24. 24.
    P. Skrzypczyk, A.J. Short, S. Popescu (2013), arXiv:1302.2811
  25. 25.
    J. Åberg, Phys. Rev. Lett. 113, 150402 (2014).  https://doi.org/10.1103/PhysRevLett.113.150402
  26. 26.
    M. Horodecki, J. Oppenheim, Nat. Commun. 4 (2013).  https://doi.org/10.1038/ncomms3059
  27. 27.
    W. Niedenzu, D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 92, 042123 (2015).  https://doi.org/10.1038/srep07809
  28. 28.
    D. Gelbwaser-Klimovsky, G. Kurizki, Sci. Rep. 5 (2015).  https://doi.org/10.1038/srep07809
  29. 29.
    M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. 108, 15097 (2011).  https://doi.org/10.1073/pnas.1110234108
  30. 30.
    S. Rahav, U. Harbola, S. Mukamel, Phys. Rev. A 86, 043843 (2012).  https://doi.org/10.1103/PhysRevA.86.043843
  31. 31.
    M.T. Mitchison, M.P. Woods, J. Prior, M. Huber, New J. Phys. 17, 115013 (2015).  https://doi.org/10.1088/1367-2630/17/11/115013
  32. 32.
    C. Latune, I. Sinayskiy, F. Petruccione (2018), arXiv:1801.10113
  33. 33.
    J.B. Brask, N. Brunner, Phys. Rev. E 92, 062101 (2015).  https://doi.org/10.1103/PhysRevE.92.062101
  34. 34.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602
  35. 35.
    G. Manzano, F. Galve, R. Zambrini, J.M. Parrondo, Phys. Rev. E 93, 052120 (2016).  https://doi.org/10.1103/PhysRevE.93.052120
  36. 36.
    R. Alicki, D. Gelbwaser-Klimovsky, New J. Phys. 17, 115012 (2015).  https://doi.org/10.1088/1367-2630/17/11/115012
  37. 37.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003).  https://doi.org/10.1126/science.1078955
  38. 38.
    D. Gelbwaser-Klimovsky, N. Erez, R. Alicki, G. Kurizki, Phys. Rev. A 88, 022112 (2013).  https://doi.org/10.1103/PhysRevA.88.022112
  39. 39.
    W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18, 083012 (2016).  https://doi.org/10.1088/1367-2630/18/8/083012
  40. 40.
    K. Brandner, M. Bauer, U. Seifert, Phys. Rev. Lett. 119, 170602 (2017).  https://doi.org/10.1103/PhysRevLett.119.170602
  41. 41.
    T. Feldmann, R. Kosloff, Phys. Rev. E 61, 4774 (2000).  https://doi.org/10.1103/PhysRevE.61.4774
  42. 42.
    R. Kosloff, T. Feldmann, Phys. Rev. E 65, 055102 (2002).  https://doi.org/10.1103/PhysRevE.65.055102
  43. 43.
    F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, R. Zambrini, Phys. Rev. Lett. 113, 260601 (2014).  https://doi.org/10.1103/PhysRevLett.113.260601
  44. 44.
    A. Alecce, F. Galve, N.L. Gullo, L. Dell’Anna, F. Plastina, R. Zambrini, New J. Phys. 17, 075007 (2015).  https://doi.org/10.1088/1367-2630/17/7/075007
  45. 45.
    R. Uzdin, A. Levy, R. Kosloff, Phys. Rev. X 5, 031044 (2015).  https://doi.org/10.1103/PhysRevX.5.031044
  46. 46.
    R. Uzdin, A. Levy, R. Kosloff, Entropy 18 (2016).  https://doi.org/10.3390/e18040124
  47. 47.
    J. Klatzow, C. Weinzetl, P.M. Ledingham, J.N. Becker, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem (2017), arXiv:1710.08716
  48. 48.
    R. Kosloff, A. Levy, Annu. Rev. Phys. Chem. 65, 365 (2014).  https://doi.org/10.1146/annurev-physchem-040513-103724
  49. 49.
    F. Chen, Y. Gao, M. Galperin, Entropy 19 (2017).  https://doi.org/10.3390/e19090472
  50. 50.
    E. Geva, R. Kosloff, J. Chem. Phys. 96, 3054 (1992).  https://doi.org/10.1063/1.461951
  51. 51.
    L.A. Correa, Phys. Rev. E 89, 042128 (2014).  https://doi.org/10.1103/PhysRevE.89.042128
  52. 52.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. E 81, 041106 (2010).  https://doi.org/10.1103/PhysRevE.81.041106
  53. 53.
    H. Scovil, E. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959).  https://doi.org/10.1103/PhysRevLett.2.262
  54. 54.
    E. Geva, R. Kosloff, Phys. Rev. E 49, 3903 (1994).  https://doi.org/10.1103/PhysRevE.49.3903
  55. 55.
    J.P. Palao, R. Kosloff, J.M. Gordon, Phys. Rev. E 64, 056130 (2001).  https://doi.org/10.1103/PhysRevE.64.056130
  56. 56.
    A. Levy, R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).  https://doi.org/10.1103/PhysRevLett.108.070604
  57. 57.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. E 87, 012140 (2013).  https://doi.org/10.1103/PhysRevE.87.012140
  58. 58.
    D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Advances In Atomic, Molecular, and Optical Physics, vol. 64 (Elsevier, Amsterdam, 2015), pp. 329–407.  https://doi.org/10.1016/bs.aamop.2015.07.002
  59. 59.
    A. Levy, R. Alicki, R. Kosloff, Phys. Rev. E 85, 061126 (2012).  https://doi.org/10.1103/PhysRevE.85.061126
  60. 60.
    S.E. Harris, Phys. Rev. A 94, 053859 (2016).  https://doi.org/10.1103/PhysRevA.94.053859
  61. 61.
    Y. Zou, Y. Jiang, Y. Mei, X. Guo, S. Du, Phys. Rev. Lett. 119, 050602 (2017).  https://doi.org/10.1103/PhysRevLett.119.050602
  62. 62.
    A.E. Allahverdyan, R.S. Johal, G. Mahler, Phys. Rev. E 77, 041118 (2008).  https://doi.org/10.1103/PhysRevE.77.041118
  63. 63.
    J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, F. Nori, Phys. Rep. 679, 1–60 (2017).  https://doi.org/10.1016/j.physrep.2017.02.003
  64. 64.
    G. Lindblad, J. Phys. A: Math. Gen. 48, 119 (1976).  https://doi.org/10.1088/0305-4470/29/14/037
  65. 65.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).  https://doi.org/10.1063/1.522979
  66. 66.
    M. Esposito, M.A. Ochoa, M. Galperin, Phys. Rev. Lett. 114, 080602 (2015).  https://doi.org/10.1103/PhysRevLett.114.080602
  67. 67.
    D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, J. Phys. Chem. Lett. 6, 3477 (2015).  https://doi.org/10.1021/acs.jpclett.5b01404
  68. 68.
    D. Segal, J. Chem. Phys. 140, 164110 (2014).  https://doi.org/10.1063/1.4871874
  69. 69.
    D. Xu, C. Wang, Y. Zhao, J. Cao, New J. Phys. 18, 023003 (2016).  https://doi.org/10.1088/1367-2630/18/2/023003
  70. 70.
    P. Strasberg, G. Schaller, N. Lambert, T. Brandes, New J. Phys. 18, 073007 (2016).  https://doi.org/10.1088/1367-2630/18/7/073007
  71. 71.
    D. Newman, F. Mintert, A. Nazir, Phys. Rev. E 95, 032139 (2017).  https://doi.org/10.1103/PhysRevE.95.032139
  72. 72.
    P. Strasberg, G. Schaller, T.L. Schmidt, M. Esposito, Phys. Rev. B 97, 205405 (2018).  https://doi.org/10.1103/PhysRevB.97.205405
  73. 73.
    G. Katz, D. Gelman, M.A. Ratner, R. Kosloff, J. Chem. Phys. 129, 034108 (2008).  https://doi.org/10.1063/1.2946703
  74. 74.
    H.-P. Breuer, F. Petruccione, Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  75. 75.
    E. Davies, Commun. Math. Phys. 39, 91 (1974).  https://doi.org/10.1007/BF01608389
  76. 76.
    R. Dumcke, Commun. Math. Phys. 97, 331 (1985).  https://doi.org/10.1007/BF01213401
  77. 77.
    A. Levy, R. Kosloff, EPL (Europhys. Lett.) 107, 20004 (2014).  https://doi.org/10.1209/0295-5075/107/20004
  78. 78.
    P.P. Hofer, M. Perarnau-Llobet, L.D.M. Miranda, G. Haack, R. Silva, J.B. Brask, N. Brunner, New J. Phys. 19, 123037 (2017).  https://doi.org/10.1088/1367-2630/aa964f
  79. 79.
    J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Open Syst. Inf. Dyn. 24, 1740010 (2017).  https://doi.org/10.1142/S1230161217400108
  80. 80.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy, vol. 6 (Oxford University Press, Oxford, 1999)Google Scholar
  81. 81.
    S. Machnes, M.B. Penio (2014), arXiv:1408.3056v1
  82. 82.
    H. Roger, R.J. Charles, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1994)Google Scholar
  83. 83.
    M. Am-Shallem, A. Levy, I. Schaefer, R. Kosloff (2015), arXiv:1510.08634
  84. 84.
    A. Levy, L. Diósi, R. Kosloff, Phys. Rev. A 93, 052119 (2016).  https://doi.org/10.1103/PhysRevA.93.052119
  85. 85.
    R. Alicki, M. Fannes, Phys. Rev. E 87, 042123 (2013).  https://doi.org/10.1103/PhysRevE.87.042123
  86. 86.
    F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, New J. Phys. 17, 075015 (2015).  https://doi.org/10.1088/1367-2630/17/7/075015
  87. 87.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015).  https://doi.org/10.1103/PhysRevX.5.041011
  88. 88.
    K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, New J. Phys. 18, 023045 (2016).  https://doi.org/10.1088/1367-2630/18/2/023045
  89. 89.
    M.P. Woods, N. Ng, S. Wehner (2015), arXiv:1506.02322
  90. 90.
    D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 90, 022102 (2014).  https://doi.org/10.1103/PhysRevE.90.022102
  91. 91.
    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, EPL (Europhys. Lett.) 103, 60005 (2013).  https://doi.org/10.1209/0295-5075/103/60005
  92. 92.
    R. Uzdin, R. Kosloff, EPL (Europhys. Lett.) 115, 40003 (2016).  https://doi.org/10.1209/0295-5075/115/40003
  93. 93.
    D.A. Lidar, P. Zanardi, K. Khodjasteh, Phys. Rev. A 78, 012308 (2008).  https://doi.org/10.1103/PhysRevA.78.012308
  94. 94.
    A. Levy, E. Torrontegui, R. Kosloff, Phys. Rev. A 96, 033417 (2017).  https://doi.org/10.1103/PhysRevA.96.033417
  95. 95.
    T. Jahnke, C. Lubich, BIT Numer. Math. 40, 735 (2000).  https://doi.org/10.1023/A:1022396519656
  96. 96.
    G. Strang, SIAM J. Numer. Anal. 5, 506 (1968).  https://doi.org/10.1137/0705041
  97. 97.
    G.J. Milburn, Phys. Rev. A 44, 5401 (1991).  https://doi.org/10.1103/PhysRevA.44.5401
  98. 98.
    L. Diósi, Phys. Lett. A 129, 419 (1988).  https://doi.org/10.1016/0375-9601(88)90309-X
  99. 99.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 325 (2016).  https://doi.org/10.1126/science.aad6320
  100. 100.
    G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich (2017).  https://doi.org/10.1038/s41467-018-08090-0
  101. 101.
    J.P. Pekola, F.W.J. Hekking, Phys. Rev. Lett. 98, 210604 (2007).  https://doi.org/10.1103/PhysRevLett.98.210604
  102. 102.
    A. Fornieri, C. Blanc, R. Bosisio, S. D’ambrosio, F. Giazotto, Nat. Nanotechnol. 11, 258 (2016).  https://doi.org/10.1038/nnano.2015.281
  103. 103.
    H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn, W. Hansen, H. Buhmann, L.W. Molenkamp, Nat. Nanotechnol. 10, 854 (2015).  https://doi.org/10.1038/nnano.2015.176
  104. 104.
    S. Deffner, E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).  https://doi.org/10.1103/PhysRevLett.105.170402
  105. 105.
    W. Pusz, S. Wornwicz, Commun. Math. Phys. 58, 273 (1978). https://projecteuclid.org/euclid.cmp/1103901491
  106. 106.
    A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen, Eur. Phys. Lett. 67, 565 (2004).  https://doi.org/10.1209/epl/i2004-10101-2
  107. 107.
    T. Feldmann, R. Kosloff, Phys. Rev. E 73, 025107(R) (2006).  https://doi.org/10.1103/PhysRevE.73.025107
  108. 108.
    E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, J.G. Muga, Adv. At. Mol. Opt. Phys. 62, 117 (2013).  https://doi.org/10.1016/B978-0-12-408090-4.00002-5
  109. 109.
    X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guery-Odelin, J.G. Muga, Phys. Rev. Lett. 104, 063002 (2010).  https://doi.org/10.1103/PhysRevLett.104.063002
  110. 110.
    A. Del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014).  https://doi.org/10.1038/srep06208
  111. 111.
    A. Levy, A. Kiely, J.G. Muga, R. Kosloff, E. Torrontegui, New J. Phys. 20, 025006 (2018).  https://doi.org/10.1088/1367-2630/aaa9e5
  112. 112.
    S. Campbell, S. Deffner, Phys. Rev. Lett. 118, 100601 (2017).  https://doi.org/10.1103/PhysRevLett.118.100601
  113. 113.
    K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, A. del Campo, Phys. Rev. Lett. 118, 100602 (2017).  https://doi.org/10.1103/PhysRevLett.118.100602
  114. 114.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012).  https://doi.org/10.1103/RevModPhys.84.1655
  115. 115.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).  https://doi.org/10.1103/RevModPhys.81.865
  116. 116.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002).  https://doi.org/10.1103/PhysRevLett.89.180402
  117. 117.
    W.H. Zurek, Phys. Rev. A 67, 012320 (2003).  https://doi.org/10.1103/PhysRevA.67.012320
  118. 118.
    D. Jennings, T. Rudolph, Phys. Rev. E 81, 061130 (2010).  https://doi.org/10.1103/PhysRevE.81.061130
  119. 119.
    A. Brodutch, D.R. Terno, Phys. Rev. A 81, 062103 (2010).  https://doi.org/10.1103/PhysRevA.81.062103
  120. 120.
    S. Popescu, D. Rohrlich, Phys. Rev. A 56, R3319 (1997).  https://doi.org/10.1103/PhysRevA.56.R3319
  121. 121.
    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016).  https://doi.org/10.1088/1751-8113/49/14/143001
  122. 122.
    K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Phys. Rev. Lett. 111, 240401 (2013).  https://doi.org/10.1103/PhysRevLett.111.240401
  123. 123.
    G.L. Giorgi, S. Campbell, J. Phys. B: At. Mol. Opt. Phys. 48, 035501 (2015).  https://doi.org/10.1088/0953-4075/48/3/035501
  124. 124.
    M. Huber, M. Perarnau-Llobet, K.V. Hovhannisyan, P. Skrzypczyk, C. Klöckl, N. Brunner, A. Acin, New J. Phys. 17, 065008 (2015).  https://doi.org/10.1088/1367-2630/17/6/065008
  125. 125.
    N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014).  https://doi.org/10.1103/PhysRevE.89.032115
  126. 126.
    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Phys. Rev. E 87, 042131 (2013).  https://doi.org/10.1103/PhysRevE.87.042131
  127. 127.
    T. Zhang, W.-T. Liu, P.-X. Chen, C.-Z. Li, Phys. Rev. A 75, 062102 (2007).  https://doi.org/10.1103/PhysRevA.75.062102
  128. 128.
    F. Altintas, A.Ü. Hardal, Ö.E. Müstecaplıoğlu, Phys. Rev. E 90, 032102 (2014).  https://doi.org/10.1103/PhysRevE.90.032102
  129. 129.
    H. Wang, S. Liu, J. He, Phys. Rev. E 79, 041113 (2009).  https://doi.org/10.1103/PhysRevE.79.041113
  130. 130.
    X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012).  https://doi.org/10.1103/PhysRevE.86.051105
  131. 131.
    A. Friedenberger, E. Lutz, EPL (Europhys. Lett.) 120, 10002 (2017).  https://doi.org/10.1209/0295-5075/120/10002
  132. 132.
    M.H. Partovi, Phys. Rev. E 77, 021110 (2008).  https://doi.org/10.1103/PhysRevE.77.021110
  133. 133.
    A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer Science & Business Media, Berlin, 2006).  https://doi.org/10.1007/0-306-47120-5
  134. 134.
    A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).  https://doi.org/10.1103/RevModPhys.50.221
  135. 135.
    B.M. Terhal, M. Horodecki, D.W. Leung, D.P. DiVincenzo, J. Math. Phys. 43, 4286 (2002).  https://doi.org/10.1063/1.1498001
  136. 136.
    G. Lindblad, Commun. Math. Phys. 39, 111 (1974).  https://doi.org/10.1007/BF01608390
  137. 137.
    R. Horodecki, P. Horodecki, Phys. Lett. A 194, 147 (1994).  https://doi.org/10.1016/0375-9601(94)91275-0
  138. 138.
    K. Micadei, J.P. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. Batalhão, R.M. Serra, E.  Lutz (2017), arXiv:1711.03323
  139. 139.
    S. Jevtic, T. Rudolph, D. Jennings, Y. Hirono, S. Nakayama, M. Murao, Phys. Rev. E 92, 042113 (2015).  https://doi.org/10.1103/PhysRevE.92.042113

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California BerkeleyBerkeleyUSA
  2. 2.The Sackler Center for Computational Molecular ScienceTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations