Advertisement

Maxwell’s Demon in Photonic Systems

  • Luca Mancino
  • Mario A. Ciampini
  • Mihai D. Vidrighin
  • Marco Sbroscia
  • Ilaria Gianani
  • Marco BarbieriEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Photons are massless, noninteracting particles, and thermodynamics seems to be completely inappropriate in their description. Here we present two examples of the opposite: connecting thermodynamics with information through Maxwell’s Demon provides interesting insight on properties of light fields. This does not amount to directly applying thermodynamics to photons, but rather helps to obtain tools and concepts from thermodynamics to manipulate and evaluate the information content of light. The examples presented here pinpoint some of the challenges that arise when putting a thought experiment into practice and provide new insights into the relation between thermodynamic work and information.

Notes

Acknowledgements

We thank Mauro Paternostro, Paolo Mataloni, Oscar Dahlsten, Ian Walmsley, M.S Kim, Vlatko Vedral, Emanuele Roccia and Valeria Cimini for discussion and encouragement.

References

  1. 1.
    K. Maruyama, F. Nori, V. Vedral, Colloquium: the physics of Maxwell’s demon and information. Rev. Mod. Phys., American Physical Society 81(1), 1–23 (2009).  https://doi.org/10.1103/RevModPhys.81.1
  2. 2.
    J.C. Maxwell, Theory of Heat (D. Appleton and Co, New York, 1872)Google Scholar
  3. 3.
    H. Leff, A.F. Rex, Maxwell’s demon 2, entropy, classical and quantum information computing, CRC Press, 2002).  https://doi.org/10.1201/9781420033991
  4. 4.
    J.C. Maxwell, Letter to P.G. Tait (Cambridge University Press, London, 1911)Google Scholar
  5. 5.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961).  https://doi.org/10.1147/rd.53.0183
  6. 6.
    R. Landauer, Information is physical. Phys. Today 44(5), 23 (1991).  https://doi.org/10.1063/1.881299
  7. 7.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)Google Scholar
  8. 8.
    M.D. Vidrighin, O. Dahlsten, M. Barbieri, M.S. Kim, V. Vedral, I.A. Walmsley, Photonic Maxwell’s demon. Phys. Rev. Lett., American Physical Society 116(5), 050401 (2016).  https://doi.org/10.1103/PhysRevLett.116.050401
  9. 9.
    F.T. Arecchi, Measurement of the statistical distribution of Gaussian and laser sources. Phys. Rev. Lett., American Physical Society 15(24), 912–916 (1965).  https://doi.org/10.1103/PhysRevLett.15.912
  10. 10.
    A. Zavatta, V. Parigi, M.S. Kim, M. Bellini, Subtracting photons from arbitrary light fields: experimental test of coherent state invariance by single-photon annihilation. N. J. Phys. 10(12), 123006 (2008).  https://doi.org/10.1088/1367-2630/10/12/123006
  11. 11.
    V. Parigi, A. Zavatta, M. Bellini, Implementation of single-photon creation and annihilation operators: experimental issues in their application to thermal states of light. J. Phys. B : Atomic, Molecular and Optical Phys. 42(11), 114005 (2009).  https://doi.org/10.1088/0953-4075/42/11/114005
  12. 12.
    M. Ueda, N. Imoto, T. Ogawa, Quantum theory for continous photodetection process. Phys. Rev. A, American Physical Society 41(7), 3891–3904 (1990).  https://doi.org/10.1103/PhysRevA.41.3891
  13. 13.
    M.D. Vidrighin, Quantum optical measurements for practical estimation and information thermodynamics, Ph.D. thesis, Imperial College London (2017)Google Scholar
  14. 14.
    T. Sagawa, M. Ueda, Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett., American Physical Society 104(9), 090602 (2010).  https://doi.org/10.1103/PhysRevLett.104.090602
  15. 15.
    N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E, American Physical Society 85(5), 14 051117 (2012).  https://doi.org/10.1103/PhysRevE.85.051117
  16. 16.
    V. Vedral, An information–theoretic equality implying the Jarzynski relation. J. Phys. A: Mathematical and Theoretical 45(27), 272001 (2012).  https://doi.org/10.1088/1751-8113/45/27/272001
  17. 17.
    M.R. Vanner, M. Aspelmeyer, M.S. Kim, Quantum state orthogonalization and a toolset for quantum optomechanical phonon control. Phys. Rev. Lett., American Physical Society 110(1), 010504 (2013).  https://doi.org/10.1103/PhysRevLett.110.010504
  18. 18.
    R. McConnell, H. Zhang, J. Hu, S. Ćuk, V. Vuletić, Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature, Nature Publishing Group, a division of Macmillan Publishers Limited 519 , 439442 (2015).  https://doi.org/10.1038/nature14293
  19. 19.
    A. Shu, J. Dai, V. Scarani, Power of an optical Maxwell’s demon in the presence of photon-number correlations. Phys. Rev. A 95(2), 022123 (2017).  https://doi.org/10.1103/PhysRevA.95.022123
  20. 20.
    L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behav. Sci. 9(4), 301–310 (1929).  https://doi.org/10.1002/bs.3830090402
  21. 21.
    K. Maruyama, F. Morikoshi, V. Vedral, Thermodynamical detection of entanglement by Maxwell’s Demons. Phys. Rev. A, American Physical Society 71(1), 012108 (2005).  https://doi.org/10.1103/PhysRevA.71.012108
  22. 22.
    V. Viguié, K. Maruyana, V. Vedral, Work extraction from tripartite entanglement. N. J. Phys. 7(1), 195 (2005).  https://doi.org/10.1088/1367-2630/7/1/195
  23. 23.
    L. Wittgenstein, Tractatus Logico-Phylosophycus, Harcour, Brace and Co. proposition 6.54 (1922)Google Scholar
  24. 24.
    M.A. Ciampini, L. Mancino, A. Orieux, C. Vigliar, P. Mataloni, M. Paternostro, M. Barbieri, Experimental extractable work-based multipartite separability criteria. npj Quantum Inf. 3(1), 10 (2017).  https://doi.org/10.1038/s41534-017-0011-9
  25. 25.
    C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, P. Mataloni, Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states. Phys. Rev. A, American Physical Society 70(2), 022321 (2004).  https://doi.org/10.1103/PhysRevA.70.022321
  26. 26.
    R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A, American Physical Society 40(8), 4277–4281 (1989).  https://doi.org/10.1103/PhysRevA.40.4277
  27. 27.
    A. Chiuri, V. Rosati, G. Vallone, S. Padua, H. Imai, S. Giacomini, C. Macchiavello, P. Mataloni, Experimental realization of optimal noise estimation for a general Pauli channel. Phys. Rev. Lett., American Physical Society 107(25), 253602 (2011).  https://doi.org/10.1103/PhysRevLett.107.253602
  28. 28.
    A. Chiuri, S. Giacomini, C. Macchiavello, P. Mataloni, Experimental achievement of the entanglement-assisted capacity for the depolarizing channel. Phys. Rev. A, American Physical Society 87(2), 022333 (2013).  https://doi.org/10.1103/PhysRevA.87.022333
  29. 29.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969).  https://doi.org/10.1103/PhysRevLett.23.880
  30. 30.
    M. Brunelli, M.G. Genoni, M. Barbieri, M. Paternostro, Detecting Gaussian entanglement via extractable work. Phys. Rev. A, American Physical Society 96(6), 062311 (2017).  https://doi.org/10.1103/PhysRevA.96.062311
  31. 31.
    S. Jevtic, D. Newman, T. Rudolph, T.M. Stace, Single-qubit thermometry. Phys. Rev. A 91(1), 012331 (2015).  https://doi.org/10.1103/PhysRevA.91.012331
  32. 32.
    W.K. Tham, H. Ferretti, A.V. Sadashivan, A.M. Steinberg, Simulating and optimising quantum thermometry using single photons. Sci. Rep. 6, 38822 (2016).  https://doi.org/10.1038/srep38822
  33. 33.
    L. Mancino, M. Sbroscia, I. Gianani, E. Roccia, M. Barbieri, Quantum simulation of single-qubit thermometry using linear optics. Phys. Rev. Lett., American Physical Society 118(13), 130502 (2017).  https://doi.org/10.1103/PhysRevLett.118.130502
  34. 34.
    L. Mancino, et al., Geometrical bounds on irreversibility in open quantum systems, Phys. Rev. Lett. 121(16) 160602 (2018).  https://doi.org/10.1103/PhysRevLett.121.160602

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luca Mancino
    • 1
  • Mario A. Ciampini
    • 2
  • Mihai D. Vidrighin
    • 3
  • Marco Sbroscia
    • 1
  • Ilaria Gianani
    • 1
  • Marco Barbieri
    • 1
    • 4
    Email author
  1. 1.Dipartimento di ScienzeUniversità degli Studi Roma TreRomeItaly
  2. 2.Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Formerly at Imperial College LondonLondonUK
  4. 4.Istituto Nazionale di Ottica - CNRFlorenceItaly

Personalised recommendations