Advertisement

Single Atom Heat Engine in a Tapered Ion Trap

  • Samuel T. DawkinsEmail author
  • Obinna Abah
  • Kilian Singer
  • Sebastian Deffner
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Trapped ions in linear Paul traps have been established as a powerful platform for performing experiments in quantum optics, quantum computing, quantum simulation, quantum control, and more recently in quantum thermodynamics. For the latter, modification of the trap geometry can facilitate the study of thermodynamic effects in the motional degrees of freedom. For instance, tapering the radial confinement of a trapped ion gives rise to temperature-dependent forces, where the definition of temperature is based on the concept of thermal states defined as an average in the time domain. It has recently been shown that such tapered traps can be used to realise single atom heat engines, where classical notions such as thermal reservoirs, heat transfer, work, internal energy, power and efficiency can be studied at quantum length scales. In this chapter, we introduce the tapered trap platform and present a basic description of it in the quantum regime.

Notes

Acknowledgements

S.T.D. and K.S. acknowledge support from the German Research Foundation (grant Einzelionen- wärmekraftmaschine), the Volkswagen Foundation (grant Atomic Nano-Assembler) and European Union (EU) COST action MP1209. O.A. is supported by the Royal Society Newton International Fellowship (grant number NF160966) and the Royal Commission for the 1851 Exhibition. S.D. acknowledges support from the U.S. National Science Foundation under Grant No. CHE-1648973.

References

  1. 1.
    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 6283 (2016).  https://doi.org/10.1126/science.aad6320CrossRefGoogle Scholar
  2. 2.
    S. Whalen, M. Thompson, D. Bahr, C. Richards, R. Richards, Sens. Actuators A 104, 290–298 (2003).  https://doi.org/10.1016/S0924-4247(03)00032-3CrossRefGoogle Scholar
  3. 3.
    P. Steeneken, Nat. Phys. 7, 354–359 (2011).  https://doi.org/10.1038/NPHYS1871CrossRefGoogle Scholar
  4. 4.
    J.P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger, A. Georges, Science 342, 713 (2013).  https://doi.org/10.1126/science.1242308ADSCrossRefGoogle Scholar
  5. 5.
    V. Blickle, C. Bechinger, Nat. Phys. 8, 143 (2012).  https://doi.org/10.1038/nphys2163CrossRefGoogle Scholar
  6. 6.
    I.A. Martínez, Nat. Phys. 12, 67–70 (2016).  https://doi.org/10.1038/nphys3518CrossRefGoogle Scholar
  7. 7.
    T. Hugel, Science 296, 1103–1106 (2002).  https://doi.org/10.1126/science.1069856ADSCrossRefGoogle Scholar
  8. 8.
    R.P. Feynman, Eng. Sci. 23, 5 (1960). http://resolver.caltech.edu/CaltechES:23.5.1960Bottom
  9. 9.
    J. He, J. Chen, B. Hua, Phys. Rev. E 65, 036145 (2002).  https://doi.org/10.1103/PhysRevE.65.036145ADSCrossRefGoogle Scholar
  10. 10.
    F. Tonner, G. Mahler, Phys. Rev. E 72, 066118 (2005).  https://doi.org/10.1103/PhysRevE.72.066118ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Kosloff, A. Levy, Annu. Rev. Phys. Chem. 65, 365 (2014).  https://doi.org/10.1146/annurev-physchem-040513-103724ADSCrossRefGoogle Scholar
  12. 12.
    E. Boukobza, D.J. Tannor, Phys. Rev. A 74, 063822 (2006).  https://doi.org/10.1103/PhysRevA.74.063822ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Y. Rezek, R. Kosloff, New J. Phys. 8, 83 (2006).  https://doi.org/10.1088/1367-2630/8/5/083ADSCrossRefGoogle Scholar
  15. 15.
    N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010).  https://doi.org/10.1103/PhysRevLett.105.130401ADSCrossRefGoogle Scholar
  16. 16.
    H.T. Quan, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. E 031105 (2007).  https://doi.org/10.1103/PhysRevE.76.031105
  17. 17.
    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003).  https://doi.org/10.1126/science.1078955ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Henrich, G. Mahler, M. Michel, Phys. Rev. E 75, 051118 (2007).  https://doi.org/10.1103/PhysRevE.75.051118ADSCrossRefGoogle Scholar
  19. 19.
    R. Kosloff, Y. Rezek, Entropy 19, 136 (2017).  https://doi.org/10.3390/e19040136ADSCrossRefGoogle Scholar
  20. 20.
    E. Geva, R. Kosloff, J. Chem. Phys. 104, 7691 (1996).  https://doi.org/10.1063/1.471453ADSCrossRefGoogle Scholar
  21. 21.
    O. Fialko, D.W. Hallwood, Phys. Rev. Lett. 108, 085303 (2012).  https://doi.org/10.1103/PhysRevLett.108.085303ADSCrossRefGoogle Scholar
  22. 22.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. E 81, 041106 (2010).  https://doi.org/10.1103/PhysRevE.81.041106ADSCrossRefGoogle Scholar
  23. 23.
    K. Zhang, F. Bariani, P. Meystre, Phys. Rev. A 90, 023819 (2014).  https://doi.org/10.1103/PhysRevA.90.023819ADSCrossRefGoogle Scholar
  24. 24.
    A. Dechant, N. Kiesel, E. Lutz, Phys. Rev. Lett. 114, 183602 (2015).  https://doi.org/10.1103/PhysRevLett.114.183602ADSCrossRefGoogle Scholar
  25. 25.
    J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics, (Springer, Berlin, 2009).  https://doi.org/10.1007/978-3-540-70510-9
  26. 26.
    D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Advances in Atomic, Molecular, and Optical Physics, vol. 64, (2015), pp. 329–407.  https://doi.org/10.1016/bs.aamop.2015.07.002
  27. 27.
    K. Brander, K. Saito, U. Seifert, Phys. Rev. X 5, 031019 (2015).  https://doi.org/10.1103/PhysRevX.5.031019CrossRefGoogle Scholar
  28. 28.
    H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959).  https://doi.org/10.1103/PhysRevLett.2.262ADSCrossRefGoogle Scholar
  29. 29.
    M. Campisi, J. Pekola, R. Fazio, New J. Phys. 17, 035012 (2015).  https://doi.org/10.1088/1367-2630/17/3/035012ADSCrossRefGoogle Scholar
  30. 30.
    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016).  https://doi.org/10.1080/00107514.2016.1201896
  31. 31.
    B. Gardas, S. Deffner, Phys. Rev. E 92, 042126 (2015).  https://doi.org/10.1103/PhysRevE.92.042126ADSCrossRefGoogle Scholar
  32. 32.
    C. Bergenfeldt, P. Samuelsson, B. Sothmann, C. Flindt, M. Bttiker, Hybrid microwave-cavity heat engine. Phys. Rev. Lett. 112, 076803 (2014).  https://doi.org/10.1103/PhysRevLett.112.076803ADSCrossRefGoogle Scholar
  33. 33.
    R. Kosloff, J. Chem. Phys. 80, 1625 (1984).  https://doi.org/10.1063/1.446862ADSCrossRefGoogle Scholar
  34. 34.
    E. Geva, R. Kosloff, J. Chem. Phys. 96, 3054 (1992).  https://doi.org/10.1063/1.461951ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 50003 (2009).  https://doi.org/10.1209/0295-5075/88/50003ADSCrossRefGoogle Scholar
  37. 37.
    O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012).  https://doi.org/10.1103/PhysRevLett.109.203006ADSCrossRefGoogle Scholar
  38. 38.
    A. Friedenberger, E. Lutz, Europhys. Lett. 120, 10002 (2017).  https://doi.org/10.1209/0295-5075/120/10002ADSCrossRefGoogle Scholar
  39. 39.
    K. Brown, J. Kim, C. Monroe, NPJ Quantum Inf. 2, 16034 (2016).  https://doi.org/10.1038/npjqi.2016.34
  40. 40.
    A. Levy, L. Disi, R. Kosloff, Phys. Rev. A 93, 052119 (2016).  https://doi.org/10.1103/PhysRevA.93.052119ADSCrossRefGoogle Scholar
  41. 41.
  42. 42.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602ADSCrossRefGoogle Scholar
  43. 43.
    O. Abah, E. Lutz, Europhys. Lett. 106, 20001 (2014).  https://doi.org/10.1209/0295-5075/106/20001ADSCrossRefGoogle Scholar
  44. 44.
    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017).  https://doi.org/10.1103/PhysRevX.7.031044CrossRefGoogle Scholar
  45. 45.
    S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy, A.K. Sood, Nat. Phys. 12, 1134 (2016).  https://doi.org/10.1038/nphys3870CrossRefGoogle Scholar
  46. 46.
    J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 77, 4728 (1996).  https://doi.org/10.1103/PhysRevLett.77.4728ADSCrossRefGoogle Scholar
  47. 47.
    C.J. Myatt, B.E. King, Q.A. Turchette, C.A. Sackett, D. Kielpinski, W.M. Itano, C. Monroe, D.J. Wineland, Nature (London) 403, 269 (2000).  https://doi.org/10.1038/35002001
  48. 48.
    A. Sarlette, J.M. Raimond, M. Brune, P. Rouchon, Phys. Rev. Lett. 107, 010402 (2011).  https://doi.org/10.1103/PhysRevLett.107.010402ADSCrossRefGoogle Scholar
  49. 49.
  50. 50.
    W.P. Schleich, Quantum Optics in Phase Space (Wiley, Weinheim, 2001).  https://doi.org/10.1002/3527602976
  51. 51.
    S. Deffner, Europhys. Lett. 103, 30001 (2013).  https://doi.org/10.1209/0295-5075/103/30001ADSCrossRefGoogle Scholar
  52. 52.
    R. Dillenschneider, E. Lutz, Phys. Rev. E 80, 042101 (2009).  https://doi.org/10.1103/PhysRevE.80.042101ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  54. 54.
    B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992).  https://doi.org/10.1103/PhysRevD.45.2843ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Samuel T. Dawkins
    • 1
    Email author
  • Obinna Abah
    • 2
  • Kilian Singer
    • 1
  • Sebastian Deffner
    • 3
  1. 1.Experimentalphysik IUniversität KasselKasselGermany
  2. 2.Centre for Theoretical Atomic, Molecular and Optical PhysicsQueen’s University BelfastBelfastUK
  3. 3.Department of PhysicsUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations