Advertisement

Quantum Thermodynamics with Multiple Conserved Quantities

  • Erick Hinds Mingo
  • Yelena Guryanova
  • Philippe Faist
  • David JenningsEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

In this chapter we address the topic of quantum thermodynamics in the presence of additional observables beyond the energy of the system. In particular we discuss the special role that the generalized Gibbs ensemble plays in this theory, and derive this state from the perspectives of a micro-canonical ensemble, dynamical typicality and a resource-theory formulation. A notable obstacle occurs when some of the observables do not commute, and so it is impossible for the observables to simultaneously take on sharp microscopic values. We show how this can be circumvented, discuss information-theoretic aspects of the setting, and explain how thermodynamic costs can be traded between the different observables. Finally, we discuss open problems and future directions for the topic.

Notes

Acknowledgements

EHM is funded by the EPSRC, DJ is supported by the Royal Society. YG acknowledges funding from the FWF START grant Y879-N27. PhF acknowledges support from the Swiss National Science Foundation (SNSF) through the Early PostDoc.Mobility Fellowship No. P2EZP2_165239 hosted by the Institute for Quantum Information and Matter (IQIM) at Caltech, from the IQIM which is a National Science Foundation (NSF) Physics Frontiers Center (NSF Grant PHY-1733907), and from the Department of Energy Award DE-SC0018407.

References

  1. 1.
    E.A. Guggenheim, The Thermodynamics of Magnetization, in Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 155(884), 70 –101(1936).  https://doi.org/10.1098/rspa.1936.0085
  2. 2.
    E.C. Stoner, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 165, 372 (1938).  https://doi.org/10.1098/rspa.1938.0066
  3. 3.
    H. Alloul, Thermodynamics of superconductors, in Introduction to the Physics of Electrons in Solids (Springer, Berlin, 2011), pp. 175–199.  https://doi.org/10.1007/978-3-642-13565-1_6
  4. 4.
    D.N. Page, Hawking radiation and black hole thermodynamics, N. J. Phys.7(1), 203 (2005).  https://doi.org/10.1088/1367-2630/7/1/203
  5. 5.
    J.B. Ott, J. Boerio-Goates (eds.), Chemical Thermodynamics: Principles and Applications (Academic, London, 2000).  https://doi.org/10.1016/B978-0-12-530990-5.50017-1
  6. 6.
    E. Schrödinger, R. Penrose, What is Life?: With Mind and Matter and Autobiographical Sketches, Canto (Cambridge University Press, Cambridge, 1992).  https://doi.org/10.1017/CBO9781139644129
  7. 7.
    T.E. Ouldridge (2017), arXiv:1702.00360 [quant-ph]
  8. 8.
    E.T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106(4), 620 (1957a).  https://doi.org/10.1103/PhysRev.106.620
  9. 9.
    E.T. Jaynes, Information Theory and Statistical Mechanics. II, Phys. Rev. 108(2), 171 (1957b).  https://doi.org/10.1103/PhysRev.108.171
  10. 10.
    M. Lostaglio, D. Jennings, T. Rudolph, Thermodynamic resource theories, non-commutativity and maximum entropy principles, N. J. Phys. 19(4), 043008 (2017).  https://doi.org/10.1088/1367-2630/aa617f
  11. 11.
    N. Yunger Halpern, Beyond heat baths II: framework for generalized thermodynamic resource theories, J. Phys. A: Math. Theor. 51(9), 094001 (2018).  https://doi.org/10.1088/1751-8121/aaa62f
  12. 12.
    S.M. Barnett, J.A. Vaccaro, Beyond Landauer Erasure, Entropy 15(11), 4956 (2013).  https://doi.org/10.3390/e15114956
  13. 13.
    J.A. Vaccaro, S.M. Barnett, Information erasure without an energy cost, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 2011).  https://doi.org/10.1098/rspa.2010.0577
  14. 14.
    F.G.S.L. Brandão, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Resource Theory of Quantum States Out of Thermal Equilibrium, Phys. Rev. Lett. 111(25), 250404 (2013).  https://doi.org/10.1103/PhysRevLett.111.250404
  15. 15.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112(11), 3275 (2015).  https://doi.org/10.1073/pnas.1411728112
  16. 16.
    N. Yunger Halpern, J.M. Renes, Beyond heat baths: Generalized resource theories for small-scale thermodynamics, Phys. Rev. E 93(2), 022126 (2016).  https://doi.org/10.1103/PhysRevE.93.022126
  17. 17.
    M. Weilenmann, L. Kraemer, P. Faist, R. Renner, Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies, Phys. Rev. Lett. 117(26), 260601 (2016).  https://doi.org/10.1103/PhysRevLett.117.260601
  18. 18.
    M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98(5), 050405 (2007).  https://doi.org/10.1103/PhysRevLett.98.050405
  19. 19.
    C. Gogolin, J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys. 79(5), 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  20. 20.
    A.C. Cassidy, C.W. Clark, M. Rigol, Generalized Thermalization in an Integrable Lattice System, Phys. Rev. Lett. 106(14), 140405 (2011).  https://doi.org/10.1103/PhysRevLett.106.140405
  21. 21.
    T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I.E. Mazets, T. Gasenzer, J. Schmiedmayer, Experimental observation of a generalized Gibbs ensemble, Science 348(6231), 207 (2015).  https://doi.org/10.1126/science.1257026
  22. 22.
    M. Perarnau-Llobet, A. Riera, R. Gallego, H. Wilming, J. Eisert, Work and entropy production in generalised Gibbs ensembles, N. J. Phys. 18(12), 123035 (2016).  https://doi.org/10.1088/1367-2630/aa4fa6
  23. 23.
    N. Yunger Halpern, P. Faist, J. Oppenheim, A. Winter, Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges, Nat. Commun. 7, 12051 (2016).  https://doi.org/10.1038/ncomms12051
  24. 24.
    Y. Guryanova, S. Popescu, A.J. Short, R. Silva, P. Skrzypczyk, Thermodynamics of quantum systems with multiple conserved quantities, Nat. Commun. 7, 12049 (2016).  https://doi.org/10.1038/ncomms12049
  25. 25.
    S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Canonical Typicality, Phys. Rev. Lett. 96(5), 050403 (2006a).  https://doi.org/10.1103/PhysRevLett.96.050403
  26. 26.
    S. Popescu, A.J. Short, A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2(11), 754EP (2006a).  https://doi.org/10.1038/nphys444
  27. 27.
    Y. Ogata, Approximating macroscopic observables in quantum spin systems with commuting matrices, J. Funct. Anal. 264(9), 2005 (2013).  https://doi.org/10.1016/j.jfa.2013.01.021
  28. 28.
    A. Winter (2015), unpublished notesGoogle Scholar
  29. 29.
    S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Canonical Typicality, Phys. Rev. Lett. 96(5), 050403 (2006b).  https://doi.org/10.1103/PhysRevLett.96.050403
  30. 30.
    S. Popescu, A.J. Short, A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2(11), 754 (2006b).  https://doi.org/10.1038/nphys444
  31. 31.
    N. Linden, S. Popescu, A. Short, A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E 79(6) (2009).  https://doi.org/10.1103/PhysRevE.79.061103
  32. 32.
    D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, Thermodynamic cost of reliability and low temperatures: tightening landauer’s principle and the second law, Int. J. Theor. Phys. 39(12), 2717 (2000).  https://doi.org/10.1023/A:1026422630734
  33. 33.
    M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059
  34. 34.
    Y.-K. Liu, Gibbs States and the Consistency of Local Density Matrices, (2006), arXiv:quant-ph/0603012v1
  35. 35.
    R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5(3), 183–191 (1961).  https://doi.org/10.1147/rd.53.0183
  36. 36.
    L. Szilard, Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Z. Phys. 53(11), 840 (1929).  https://doi.org/10.1007/BF01341281
  37. 37.
    C.H. Bennett, The thermodynamics of computation—a review, Int. J. Theor. Phys. 21(12), 905 (1982).  https://doi.org/10.1007/BF02084158
  38. 38.
    C.H. Bennett, Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501 (2003).  https://doi.org/10.1016/S1355-2198(03)00039-X
  39. 39.
    T. Croucher, S. Bedkihal, J.A. Vaccaro, Discrete Fluctuations in Memory Erasure without Energy Cost, Phys. Rev. Lett. 118(6), 060602 (2017).  https://doi.org/10.1103/PhysRevLett.118.060602
  40. 40.
    S. Weis, A. Knauf, Entropy distance: New quantum phenomena, J. Math. Phys. 53(10), 102206 (2012).  https://doi.org/10.1063/1.4757652
  41. 41.
    O. Barndorff-Nielsen, Information and Exponential Families: In Statistical Theory (Wiley, New York, 2014), pp. 1–8.  https://doi.org/10.1002/9781118857281.ch1
  42. 42.
    J. Chen, Z. Ji, C.-K. Li, Y.-T. Poon, Y. Shen, N. Yu, B. Zeng, D. Zhou, Discontinuity of maximum entropy inference and quantum phase transitions, N. J. Phys. 17(8), 083019 (2015).  https://doi.org/10.1088/1367-2630/17/8/083019
  43. 43.
    K. Korzekwa, M. Lostaglio, J. Oppenheim, D. Jennings, The extraction of work from quantum coherence, N. J. Phys. 18(2), 023045 (2016).  https://doi.org/10.1088/1367-2630/18/2/023045
  44. 44.
    H. Kwon, H. Jeong, D. Jennings, B. Yadin, M. Kim (2017).  https://doi.org/10.1103/PhysRevLett.120.150602
  45. 45.
    G. Gour, D. Jennings, F. Buscemi, R. Duan, I. Marvian, Quantum majorization and a complete set of entropic conditions for quantum thermodynamics, Nat. Commun. 9(5352) (2018).  https://doi.org/10.1038/s41467-018-06261-7

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Erick Hinds Mingo
    • 1
    • 4
  • Yelena Guryanova
    • 2
  • Philippe Faist
    • 3
  • David Jennings
    • 4
    Email author
  1. 1.QOLS, Blackett LaboratoryImperial College LondonLondonUnited Kingdom
  2. 2.Institute for Quantum Optics and Quantum Information (IQOQI)ViennaAustria
  3. 3.Institute for Quantum Information and MatterCaltechUSA
  4. 4.Department of PhysicsUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations