Advertisement

Performance of Quantum Thermodynamic Cycles

  • Tova Feldmann
  • José P. PalaoEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Quantum cycles are the microscopic version of the macroscopic thermodynamic cycles, such as the Carnot cycle or the Otto cycle. The quantum Otto cycle consists of four-strokes, two adiabats and two isochores. The equations for the dynamics on the adiabats and isochores are derived from first principles and illustrated for a working medium consisting of spins. We review a frictionlike behaviour due to the noncommutability of the external and internal Hamiltonians. The performance of the engine cycle and the refrigerator cycle are illustrated using a simple model of an ensemble of spin pairs with an effective interaction.

Notes

Acknowledgements

Tova Feldmann thanks Prof. Ronnie Kosloff the collaboration for over twenty years, during which Ronnie taught her new ways of thinking in science. Tova Feldmann also thanks Amikam Levy for many interesting conversations. José P. Palao thanks Ronnie Kosloff, Antonia Ruiz and J. Onam González for useful discussions, and acknowledges financial support by the Spanish MINECO (FIS2013-4132-P, FIS2017-82855-P).

References

  1. 1.
    E. Geva, R. Kosloff, A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 96, 3054 (1992).  https://doi.org/10.1063/1.461951
  2. 2.
    E. Geva, R. Kosloff, On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 97, 4398 (1992).  https://doi.org/10.1063/1.463909
  3. 3.
    H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007).  https://doi.org/10.1103/PhysRevE.76.031105
  4. 4.
    A.E. Allahverdyan, E. Armen, R.S. Johal, G. Mahler, Work extremum principle: structure and function of quantum heat engines. Phys. Rev. E 77, 041118 (2008).  https://doi.org/10.1103/PhysRevE.77.041118
  5. 5.
    R. Silva, G. Manzano, P. Skrzypczyk, N. Brunner, Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys. Rev. E 94, 032120 (2016).  https://doi.org/10.1103/PhysRevE.94.032120
  6. 6.
    M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010).  https://doi.org/10.1103/PhysRevLett.105.150603
  7. 7.
    R. Kosloff, T. Feldmann, Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65, 055102 (2002).  https://doi.org/10.1103/PhysRevE.65.055102
  8. 8.
    T. Feldmann, R. Kosloff, Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68, 016101 (2003).  https://doi.org/10.1103/PhysRevE.68.016101
  9. 9.
    Y. Rezek, R. Kosloff, Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8, 83 (2006).  https://doi.org/10.1088/1367-2630/8/5/083
  10. 10.
    R. Kosloff, Y. Rezek, The quantum harmonic Otto cycle. Entropy 19, 136 (2017).  https://doi.org/10.3390/e19040136
  11. 11.
    T. Feldmann, R. Kosloff, Performance of discrete heat engines and heat pumps in finite time. Phys. Rev. E 61, 4774 (2000).  https://doi.org/10.1103/PhysRevE.61.4774
  12. 12.
    J. He, J. Chen, B. Hua, Quantum refrigeration cycles using spin-1/2 systems as working substance. Phys. Rev. E 65, 036145 (2002).  https://doi.org/10.1103/PhysRevE.65.036145
  13. 13.
    Y. Rezek, P. Salamon, K.H. Hoffmann, R. Kosloff, The quantum refrigerator: the quest for absolute zero. Europhys. Lett. 85, 30008 (2009).  https://doi.org/10.1209/0295-5075/85/30008
  14. 14.
    T. Feldmann, R. Kosloff, Minimal temperature of quantum refrigerators. Europhys. Lett. 89, 20004 (2010).  https://doi.org/10.1209/0295-5075/89/20004
  15. 15.
    R. Kosloff, T. Feldmann, Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 82, 011134 (2010).  https://doi.org/10.1103/PhysRevE.82.011134
  16. 16.
    E. Torrontegui, R. Kosloff, Quest for absolute zero in the presence of external noise. Phys. Rev. E 88, 032103 (2013).  https://doi.org/10.1103/PhysRevE.88.032103
  17. 17.
    T. Feldmann, E. Geva, R. Kosloff, P. Salomon, Heat engines in finite time governed by master equations. Am. J. Phys. 64, 485 (1996).  https://doi.org/10.1119/1.18197
  18. 18.
    F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, G. Galve, N. Lo Gullo, R. Zambrini, Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014).  https://doi.org/10.1103/PhysRevLett.113.260601
  19. 19.
    X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010).  https://doi.org/10.1103/PhysRevLett.104.063002
  20. 20.
    T. Feldmann, R. Kosloff, Short time cycles of purely quantum refrigerators. Phys. Rev. E 85, 051114 (2012).  https://doi.org/10.1103/PhysRevE.85.051114
  21. 21.
    H. Breuer, F. Petruccione, The Theory of Open Quamtum Systems (Oxford University Press, New York, 2002).  https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
  22. 22.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976).  https://doi.org/10.1007/BF01608499
  23. 23.
    V. Gorini, A. Kossakowski, E. Sudarshan, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821 (1976).  https://doi.org/10.1063/1.522979
  24. 24.
    T. Feldmann, R. Kosloff, Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006).  https://doi.org/10.1103/PhysRevE.73.025107
  25. 25.
    T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).  https://doi.org/10.1103/PhysRevLett.113.140401
  26. 26.
    A. Bartana, R. Kosloff, D. Tannor, Laser cooling of molecular internal degrees of freedom by a series of shaped pulses. J. Chem. Phys. 99, 196 (1993).  https://doi.org/10.1063/1.465797
  27. 27.
    A. del Campo, J. Goold, M. Paternostro, More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014).  https://doi.org/10.1038/srep06208
  28. 28.
    R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamics signatures. Phys. Rev. X 5, 031044 (2015).  https://doi.org/10.1103/PhysRevX.5.031044
  29. 29.
    R. Uzdin, R. Kosloff, Universal features in the efficiency at maximal work of hot quantum Otto engines. Europhys. Lett. 108, 40001 (2014).  https://doi.org/10.1209/0295-5075/108/40001
  30. 30.
    I.I. Novikov, Efficiency of an atomic power generating installation. At. Energy 3, 1269 (1957).  https://doi.org/10.1007/BF01507240
  31. 31.
    F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975).  https://doi.org/10.1119/1.10023
  32. 32.
    C. Van den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005).  https://doi.org/10.1103/PhysRevLett.95.190602
  33. 33.
    P. Salamon, J.D. Nulton, G. Siragusa, T.R. Andersen, A. Limon, Principles of control thermodynamics. Energy 26, 307 (2001).  https://doi.org/10.1016/S0360-5442(00)00059-1
  34. 34.
    P. Salamon, K.H. Hoffmann, Y. Rezek, R. Kosloff, Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 11, 1027 (2009).  https://doi.org/10.1039/b816102j
  35. 35.
    J.P. Palao, L.A. Correa, G. Adesso, D. Alonso, Efficiency of inefficient endoreversible thermal machines. Braz. J. Phys. 46, 282 (2016).  https://doi.org/10.1007/s13538-015-0396-x
  36. 36.
    O. Abah, E. Lutz, Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113, 60002 (2016).  https://doi.org/10.1209/0295-5075/113/60002
  37. 37.
    J.M. Gordon, K.C. Ng, H.T. Chua, Optimizing chiller operation based on finite-time thermodynamics: universal modeling and experimental confirmation. Int. J. Refrig. 20, 191 (1997).  https://doi.org/10.1016/S0140-7007(96)00074-6
  38. 38.
    T. Feldmann, R. Kosloff, Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70, 046110 (2004).  https://doi.org/10.1103/PhysRevE.70.046110
  39. 39.
    A. Insinga, B. Andresen, P. Salamon, R. Kosloff, Quantum heat engines: limit cycles and exceptional points. Phys. Rev. E 97 062153 (2018).  https://doi.org/10.1103/PhysRevE.97.062153
  40. 40.
    A. Insinga, B. Andresen, P. Salamon, Thermodynamical analysis of a quantum heat engine based on harmonic oscillator. Phys. Rev. E 94, 012119 (2016).  https://doi.org/10.1103/PhysRevE.94.012119
  41. 41.
    M. Hübner, Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239 (1992).  https://doi.org/10.1016/0375-9601(92)91004-B
  42. 42.
    U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  43. 43.
    J.O. González, J.P. Palao, D. Alonso, Relation between topology and heat currents in multilevel absorption machines. New J. Phys. 19, 113037 (2017).  https://doi.org/10.1088/1367-2630/aa8647
  44. 44.
    T. Feldmann, R. Kosloff, Transitions between refrigeration regions in extremely short quantum cycles. Phys. Rev. E 93, 052150 (2016).  https://doi.org/10.1103/PhysRevE.93.052150
  45. 45.
    R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence, work extraction beyond Markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016).  https://doi.org/10.3390/e18040124
  46. 46.
    J. Rosnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016).  https://doi.org/10.1126/science.aad6320

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryHebrew University of JerusalemJerusalemIsrael
  2. 2.Departamento de Física and IUdEAUniversidad de La LagunaLa LagunaSpain

Personalised recommendations