Advertisement

Information Erasure

  • Toshio Croucher
  • Jackson Wright
  • André R. R. Carvalho
  • Stephen M. Barnett
  • Joan A. VaccaroEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

Information is central to thermodynamics, providing the grounds to the formulation of the theory in powerful abstract statistical terms. One must not forget, however, that, as put by Landauer, information is physical. This means that the processing of information will be unavoidably linked to the costs of manipulating the real physical systems carrying the information. Here we will focus on the particular process of erasing information, which plays a fundamental role in the description of heat engines. We will review Landauer’s principle and the associated erasure energy cost. We will also show, following the recent contributions from Vaccaro and Barnett, that cost of erasing does not need to be paid with energy, but with any other conserved quantity. Finally, we will address the issue of designing heat engines based on these new concepts.

Notes

Acknowledgements

J.A.V. thanks the Australian Research Council (LP140100797) and the Lockheed Martin Corporation for financial support. S.M.B. thanks the Royal Society for support (RP150122).

References

  1. 1.
    J.C. Maxwell, Theory of Heat (Longmans, Green and Co., 1902). https://openlibrary.org/books/OL7243600M
  2. 2.
    H. Leff, A. Rex (eds.), Maxwell’s Demon: Entropy, Information, Computing Chronological Bibliography, p. 290 (Princeton University Press, Boston, 1990)Google Scholar
  3. 3.
    H. Leff, A. Rex, Maxwell’s demon 2: Entropy, Classical and Quantum Information, Computing (Institute of Physics Publishing, London, 2003)Google Scholar
  4. 4.
    L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behavior. Sci. 9, 301–310 (1964) [English translation of Über die Enfropieuerminderung in einem thermodynamischen System bei Eingrifen intelligenter Wesen, Zeitschrift fur Physik, 53, 840–856 (1929)].  https://doi.org/10.1002/bs.3830090402
  5. 5.
    L. Brillouin, J. Appl. Phys. 24, 1152 (1953).  https://doi.org/10.1063/1.1721463ADSCrossRefGoogle Scholar
  6. 6.
    L. Brillouin, Science and Information Theory (Academic Press, New York, 1965)zbMATHGoogle Scholar
  7. 7.
    R. Landauer, IBM J. 183 (1961).  https://doi.org/10.1147/rd.53.0183
  8. 8.
    C.H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).  https://doi.org/10.1007/BF02084158CrossRefGoogle Scholar
  9. 9.
  10. 10.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957). Generalized Statistical Mechanics.  https://doi.org/10.1103/PhysRev.106.620
  11. 11.
  12. 12.
    J.A. Vaccaro, S.M. Barnett, in Asian Conference on Quantum Information Science, September, Beijing, China, pp. 1–4 (2006), http://aqis-conf.org/archives/aqis06/
  13. 13.
    J.A. Vaccaro, S.M. Barnett, in Quantum Communication, Measurement and Computing (QCMC), calgary, Canada, 19–24 August 2008. AIP Conference Proceedings, vol. 1110, pp. 37–40 (2008).  https://doi.org/10.1063/1.3131353
  14. 14.
    N. Yunger Halpern, P. Faist, J. Oppenheim, A. Winter, Nat. Commun. 7, 12051 (2016).  https://doi.org/10.1038/ncomms12051ADSCrossRefGoogle Scholar
  15. 15.
    N. Yunger Halpern, J.M. Renes, Phys. Rev. E 93, 022126 (2016).  https://doi.org/10.1103/physreve.93.022126
  16. 16.
    R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Open Syst. Inf. Dyn. 11, 205 (2004).  https://doi.org/10.1023/B:OPSY.0000047566.72717.71MathSciNetCrossRefGoogle Scholar
  17. 17.
    L. del Rio, J. Åberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011).  https://doi.org/10.1038/nature10123CrossRefGoogle Scholar
  18. 18.
    K. Shizume, Phys. Rev. E 52, 3495 (1995).  https://doi.org/10.1103/PhysRevE.52.3495ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    D. Reeb, M.M. Wolf, New J. Phys. 16, 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011ADSCrossRefGoogle Scholar
  21. 21.
    T.J.G. Apollaro, S. Lorenzo, C.D. Franco, F. Plastina, M. Paternostro, Phys. Rev. A 90 (2014).  https://doi.org/10.1103/physreva.90.012310
  22. 22.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015).  https://doi.org/10.1073/pnas.1411728112
  23. 23.
    R. Landauer, in Proceedings of the Workshop on Physics and Computation PhysComp’92, p. 1 (IEEE Computer Society Press, Los Alamos, 1993).  https://doi.org/10.1109/PHYCMP.1992.615478
  24. 24.
    J.A. Vaccaro, S.M. Barnett, Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 1770 (2011).  https://doi.org/10.1098/rspa.2010.0577ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Barnett, J.A. Vaccaro, Entropy 15, 4956 (2013).  https://doi.org/10.3390/e15114956ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Croucher, S. Bedkihal, J.A. Vaccaro, Phys. Rev. Lett. 118, 060602 (2017).  https://doi.org/10.1103/physrevlett.118.060602ADSCrossRefGoogle Scholar
  27. 27.
    J.A. Vaccaro, S.M. Barnett, AIP Conf. Proc. 1110, 37 (2009).  https://doi.org/10.1063/1.3131353
  28. 28.
    M. Lostaglio, D. Jennings, T. Rudolph, 19, 043008.  https://doi.org/10.1088/1367-2630/aa617f
  29. 29.
    J.S.S.T. Wright, T. Gould, A.R.R. Carvalho, S. Bedkihal, J.A. Vaccaro, Phys. Rev. A 97, 052104 (2018).  https://doi.org/10.1103/PhysRevA.97.052104ADSCrossRefGoogle Scholar
  30. 30.
    Y. Guryanova, S. Popescu, A. Short, R. Silva, P. Skrzypczyk, Nat. Commun. 7, 12049 (2016).  https://doi.org/10.1038/ncomms12049ADSCrossRefGoogle Scholar
  31. 31.
    K. Ito, M. Hayashi, Phys. Rev. E 97 (2018).  https://doi.org/10.1103/physreve.97.012129
  32. 32.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter (2017), arXiv:1707.01750v1
  33. 33.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993).  https://doi.org/10.1103/PhysRevLett.71.2401ADSCrossRefGoogle Scholar
  34. 34.
    D.J. Evans, D.J. Searles, Phys. Rev. E 50, 1645 (1994).  https://doi.org/10.1103/PhysRevE.50.1645ADSCrossRefGoogle Scholar
  35. 35.
    R. Dillenschneider, E. Lutz, Phys. Rev. Lett. 102 (2009).  https://doi.org/10.1103/physrevlett.102.210601
  36. 36.
    C. Jarzynski, Phys. Rev. E 56 (1997).  https://doi.org/10.1103/PhysRevE.56.5018
  37. 37.
    J.L.W.V. Jensen, Acta Math. 30, 175 (1906).  https://doi.org/10.1007/BF02418571MathSciNetCrossRefGoogle Scholar
  38. 38.
    T. Xiong, L. Yan, F. Zhou, K. Rehan, D. Liang, L. Chen, W. Yang, Z. Ma, M. Feng, V. Vedral, Phys. Rev. Lett. 120 (2018).  https://doi.org/10.1103/physrevlett.120.010601
  39. 39.
    A. Berut, A. Petrosyan, S. Ciliberto, Europhys. Lett. 103, 60002 (2013).  https://doi.org/10.1209/0295-5075/103/60002
  40. 40.
    C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana Il, 1963)zbMATHGoogle Scholar
  41. 41.
    A. Eddington, The Nature of the Physical World (J. M. Dent, London, 1928). https://openlibrary.org/books/OL15026629M
  42. 42.
    B. Schumacher, Quantum Information and Foundations of Thermodynamics (ETH Zürich, 2011), https://www.video.ethz.ch/conferences/2011/qiftw11/f9bb6f3d-7461-4971-8213-2e3ceb48c0ba.html. Accessed 13 Mar 2018
  43. 43.
    D. Song, E. Winstanley, Int. J. Theor. Phys. 47, 1692 (2007).  https://doi.org/10.1007/s10773-007-9610-0

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Toshio Croucher
    • 1
  • Jackson Wright
    • 1
  • André R. R. Carvalho
    • 1
  • Stephen M. Barnett
    • 2
  • Joan A. Vaccaro
    • 1
    Email author
  1. 1.Centre for Quantum DynamicsGriffith UniversityBrisbaneAustralia
  2. 2.School of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations