Advertisement

The Second Law and Beyond in Microscopic Quantum Setups

  • Raam UzdinEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

The Clausius inequality (CI) is one of the most versatile forms of the second law. Although it was originally conceived for macroscopic steam engines, it is also applicable to quantum single particle machines. Moreover, the CI is the main connecting thread between classical microscopic thermodynamics and nanoscopic quantum thermodynamics. In this chapter, we study three different approaches for obtaining the CI. Each approach shows different aspects of the CI. The goals of this chapter are: (i) To show the exact assumptions made in various derivations of the CI. (ii) To elucidate the structure of the second law and its origin. (iii) To discuss the possibilities each approach offers for finding additional second-law like inequalities. (iv) To pose challenges related to the second law in nanoscopic setups. In particular, we introduce and briefly discuss the notions of exotic heat machines (X machines), and “lazy demons”.

References

  1. 1.
    R. Landauer, IBM J. Res. Dev. 5, 183 (1961).  https://doi.org/10.1147/rd.53.0183
  2. 2.
    D. Reeb, M.M. Wolf, New J. Phys. 16, 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011
  3. 3.
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. 112, 3275 (2015).  https://doi.org/10.1073/pnas.1411728112
  4. 4.
    M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059
  5. 5.
    M. Lostaglio, D. Jennings, T. Rudolph, Nat. Commun. 6, 6383 (2015).  https://doi.org/10.1038/ncomms7383
  6. 6.
    R. Uzdin, Phys. Rev. E 96, 032128 (2017).  https://doi.org/10.1103/PhysRevE.96.032128
  7. 7.
    G. Gour, M.P. Müller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, Phys. Rep. 583, 1 (2015).  https://doi.org/10.1016/j.physrep.2015.04.003
  8. 8.
    N. Yunger Halpern, J.M. Renes, Phys. Rev. E 93, 022126 (2016).  https://doi.org/10.1103/PhysRevE.93.022126
  9. 9.
    N. Yunger Halpern, J. Phys. A Math. Theor. 51, Art (2018).  https://doi.org/10.1088/1751-8121/aaa62f
  10. 10.
    R. Uzdin, A. Levy, R. Kosloff, Entropy 18, 124 (2016).  https://doi.org/10.3390/e18040124ADSCrossRefGoogle Scholar
  11. 11.
    A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer Science & Business Media, Berlin, 2006).  https://doi.org/10.1007/0-306-47120-5
  12. 12.
    M. Esposito, C. Van den Broeck, EPL (Europhys. Lett.) 95, 40004 (2011).  https://doi.org/10.1209/0295-5075/95/40004ADSCrossRefGoogle Scholar
  13. 13.
    T. Sagawa, Lectures on Quantum Computing, Thermodynamics and Statistical Physics, vol. 8 (2012), p. 127Google Scholar
  14. 14.
    P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Phys. Rev. X 7, 021003 (2017).  https://doi.org/10.1103/PhysRevX.7.021003CrossRefGoogle Scholar
  15. 15.
    M. Lostaglio, D. Jennings, T. Rudolph, New J. Phys. 19, 043008 (2017).  https://doi.org/10.1088/1367-2630/aa617fADSCrossRefGoogle Scholar
  16. 16.
    Y. Guryanova, S. Popescu, A.J. Short, R. Silva, P. Skrzypczyk, Nat. Commun. 7, 12049 (2016).  https://doi.org/10.1038/ncomms12049ADSCrossRefGoogle Scholar
  17. 17.
    N. Yunger Halpern, P. Faist, J. Oppenheim, A. Winter, Nat. Commun. 7, 12051 (2016).  https://doi.org/10.1038/ncomms12051
  18. 18.
    M. Esposito, K. Lindenberg, C. Van den Broeck, New J. Phys. 12, 013013 (2010).  https://doi.org/10.1088/1367-2630/12/1/013013ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Jarzynski, J. Stat. Phys. 96, 415 (1999).  https://doi.org/10.1023/A:1004541004050ADSCrossRefGoogle Scholar
  20. 20.
    S. Deffner, C. Jarzynski, Phys. Rev. X 3, 041003 (2013).  https://doi.org/10.1103/PhysRevX.3.041003CrossRefGoogle Scholar
  21. 21.
    S. Deffner, E. Lutz, Phys. Rev. Lett. 105, 170402 (2010).  https://doi.org/10.1103/PhysRevLett.105.170402ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (2002)Google Scholar
  23. 23.
    A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, vol. 143 (Springer, Berlin, 1979).  https://doi.org/10.1007/978-0-387-68276-1
  24. 24.
    P. Oscar Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen, Proc. Nat. Acad. Sci. 99, 3388 (2002).  https://doi.org/10.1073/pnas.241641898
  25. 25.
    R. Uzdin, S. Gasparinetti, R. Ozeri, R Kosloff, New J. Phys. 20, 063030 (2018).  https://doi.org/10.1088/1367-2630/aac932
  26. 26.
    C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506ADSCrossRefGoogle Scholar
  27. 27.
    T. Speck, U. Seifert, J. Stat. Mech. Theory Exp. 2007, L09002 (2007).  https://doi.org/10.1088/1742-5468/2007/09/L09002CrossRefGoogle Scholar
  28. 28.
    R. Harris, G. Schütz, J. Stat. Mech. Theory Exp. 2007, P07020 (2007).  https://doi.org/10.1088/1742-5468/2007/07/P07020CrossRefGoogle Scholar
  29. 29.
    M. Campisi, J. Pekola, R. Fazio, New J. Phys. 17, 035012 (2015).  https://doi.org/10.1088/1367-2630/17/3/035012ADSCrossRefGoogle Scholar
  30. 30.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690ADSCrossRefGoogle Scholar
  31. 31.
    J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935).  https://doi.org/10.1063/1.1749657ADSCrossRefGoogle Scholar
  32. 32.
    U. Seifert, Phys. Rev. Lett. 116, 020601 (2016).  https://doi.org/10.1103/PhysRevLett.116.020601ADSCrossRefGoogle Scholar
  33. 33.
    H.J.D. Miller, J. Anders, Phys. Rev. E 95, 062123 (2017).  https://doi.org/10.1103/PhysRevE.95.062123ADSCrossRefGoogle Scholar
  34. 34.
    C. Jarzynski, Phys. Rev. X 7, 011008 (2017).  https://doi.org/10.1103/PhysRevX.7.011008CrossRefGoogle Scholar
  35. 35.
    P. Strasberg, M. Esposito, Phys. Rev. E 95, 062101 (2017).  https://doi.org/10.1103/PhysRevE.95.062101
  36. 36.
    P. Strasberg, M. Esposito, Phys. Rev. E 99, 012120 (2019).  https://doi.org/10.1103/PhysRevE.99.012120
  37. 37.
    K. Micadei, J.P. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. Batalhão, R.M. Serra, E. Lutz (2017), arXiv:1711.03323
  38. 38.
    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014).  https://doi.org/10.1103/PhysRevLett.112.030602ADSCrossRefGoogle Scholar
  39. 39.
    G. Manzano, F. Galve, R. Zambrini, J.M. Parrondo, Phys. Rev. E 93, 052120 (2016).  https://doi.org/10.1103/PhysRevE.93.052120
  40. 40.
    G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, Nat. Commun. 10, 202 (2019).  https://doi.org/10.1038/s41467-018-08090-0
  41. 41.
    W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Nat. Commun. 9, 165 (2018).  https://doi.org/10.1038/s41467-017-01991-6ADSCrossRefGoogle Scholar
  42. 42.
    W. Pusz, S. Wornwicz, Commun. Math. Phys. 58, 273 (1978), https://projecteuclid.org/euclid.cmp/1103901491
  43. 43.
    A. Lenard, J. Stat. Phys. 19, 575 (1978).  https://doi.org/10.1007/BF01011769ADSCrossRefGoogle Scholar
  44. 44.
    A.E. Allahverdyan, R. Balian, Th.M. Nieuwenhuizen, Euro. Phys. Lett. 67, 565 (2004).  https://doi.org/10.1209/epl/i2004-10101-2
  45. 45.
    F. Binder, S. Vinjanampathy, K. Modi, J. Goold, Phys. Rev. E 91, 032119 (2015).  https://doi.org/10.1103/PhysRevE.91.032119ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017).  https://doi.org/10.1103/PhysRevLett.118.070601ADSCrossRefGoogle Scholar
  47. 47.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter (2017), arXiv:1707.01750
  48. 48.
    A. Streltsov, G. Adesso, M.B. Plenio, Rev. Modern Phys. 89, 041003 (2017).  https://doi.org/10.1103/RevModPhys.89.041003ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    R. Uzdin, S. Rahav, Phys. Rev. X 8, 021064 (2018).  https://doi.org/10.1103/PhysRevX.8.021064
  50. 50.
    P. Kammerlander, J. Anders, Sci. Rep. 6, 22174 (2016).  https://doi.org/10.1038/srep22174ADSCrossRefGoogle Scholar
  51. 51.
    S. Still, D.A. Sivak, A.J. Bell, G.E. Crooks, Phys. Rev. Lett. 109, 120604 (2012).  https://doi.org/10.1103/PhysRevLett.109.120604ADSCrossRefGoogle Scholar
  52. 52.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, J. Tura, A. Acín, Phys. Rev. E 92, 042147 (2015a).  https://doi.org/10.1103/PhysRevE.92.042147ADSCrossRefGoogle Scholar
  53. 53.
    M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 5, 041011 (2015b).  https://doi.org/10.1103/PhysRevX.5.041011CrossRefGoogle Scholar
  54. 54.
    A. Levy, R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012).  https://doi.org/10.1103/PhysRevLett.108.070604ADSCrossRefGoogle Scholar
  55. 55.
    F.C. Binder, Work, heat, and power of quantum processes. Ph.D. thesis, School University of Oxford, 2016Google Scholar
  56. 56.
    P. Faist, J. Oppenheim, R. Renner, New J. Phys. 17, 043003 (2015).  https://doi.org/10.1088/1367-2630/17/4/043003ADSCrossRefGoogle Scholar
  57. 57.
    J. Anders, V. Giovannetti, New J. Phys. 15, 033022 (2013).  https://doi.org/10.1088/1367-2630/15/3/033022
  58. 58.
    R. Uzdin, In PreparationGoogle Scholar
  59. 59.
    J.B. Brask, G. Haack, N. Brunner, M. Huber, New J. Phys. 17, 113029 (2015).  https://doi.org/10.1088/1367-2630/17/11/113029ADSCrossRefGoogle Scholar
  60. 60.
    F. Tacchino, A. Auffèves, M. Santos, D. Gerace, Phys. Rev. Lett. 120, 063604 (2018).  https://doi.org/10.1103/PhysRevLett.120.063604ADSCrossRefGoogle Scholar
  61. 61.
    H.S. Leff, A.F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Princeton University Press, Princeton, 2014)Google Scholar
  62. 62.
    J. Goold, M. Paternostro, K. Modi, Phys. Rev. Lett. 114, 060602 (2015).  https://doi.org/10.1103/PhysRevLett.114.060602ADSCrossRefGoogle Scholar
  63. 63.
    J.P. Santos, G.T. Landi, M. Paternostro, Phys. Rev. Lett. 118, 220601 (2017).  https://doi.org/10.1103/PhysRevLett.118.220601ADSCrossRefGoogle Scholar
  64. 64.
    C. Sparaciari, D. Jennings, J. Oppenheim, Nat. Commun. 8, 1895 (2017).  https://doi.org/10.1038/s41467-017-01505-4

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Fritz Haber Research Center for Molecular DynamicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations