Advertisement

Cooling to Absolute Zero: The Unattainability Principle

  • Nahuel FreitasEmail author
  • Rodrigo Gallego
  • Lluís Masanes
  • Juan Pablo Paz
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

The unattainability principle (UP) is an operational formulation of the third law of thermodynamics stating the impossibility to bring a system to its ground state in finite time. In this work, several recent derivations of the UP are presented, with a focus on the set of assumptions and allowed sets of operations under which the UP can be formally derived. First, we discuss derivations allowing for arbitrary unitary evolutions as the set of operations. There the aim is to provide fundamental bounds on the minimal achievable temperature, which are applicable with almost full generality. These bounds show that perfect cooling requires an infinite amount of a given resource—worst-case work, heat bath’s size and dimensionality or non-equilibrium states among others—which can in turn be argued to imply that an infinite amount of time is required to access those resources. Secondly, we present derivations within a less general set of operations conceived to capture a broad class of currently available experimental settings. In particular, the UP is here derived within a model of linear and driven quantum refrigerators consisting on a network of harmonic oscillators coupled to several reservoirs at different temperatures.

References

  1. 1.
    W. Nernst, Ueber die berechnung chemischer gleichgewichte aus thermischen messungen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1906, 1–40 (1906), http://eudml.org/doc/58630
  2. 2.
    M. Planck, Thermodynamik, 3rd edn. (De Gruyter, Berlin, 1911)Google Scholar
  3. 3.
    A. Einstein, Beitrge zur quantentheorie. Deutsche Phys. Gesellschaft. Verh. 16, 820828 (1914)Google Scholar
  4. 4.
    W. Nernst, Über die beziehungen zwischen wärmeentwicklung und maximaler arbeit bei kondensierten systemen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 933–940 (1906)Google Scholar
  5. 5.
    W. Nernst, Sitzberg. Kgl. Preuss. Akad. Wiss. Physik.-Math. Kl (1912)Google Scholar
  6. 6.
    E.H. Lieb, D.W. Robinson, Commun. Math. Phys. 28, 251257 (1972).  https://doi.org/10.1007/BF01645779
  7. 7.
    H. Wilming, R. Gallego, Third law of thermodynamics as a single inequality. Phys. Rev. X 7, 041033 (2017).  https://doi.org/10.1103/PhysRevX.7.041033
  8. 8.
    L. Masanes, J. Oppenheim, A general derivation and quantification of the third law of thermodynamics. Nat. Commun. 8 (2017).  https://doi.org/10.1038/ncomms14538
  9. 9.
    N. Freitas, J.P. Paz, Cooling a quantum oscillator: a useful analogy to understand laser cooling as a thermodynamical process. Phys. Rev. A 97, 032104 (2018).  https://doi.org/10.1103/PhysRevA.97.032104
  10. 10.
    J. Aberg, Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013).  https://doi.org/10.1038/ncomms2712
  11. 11.
    D. Jennings, T. Rudolph, Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81, 061130 (2010).  https://doi.org/10.1103/PhysRevA.97.032104
  12. 12.
    M.N. Bera, A. Riera, M. Lewenstein, A. Winter, Generalized laws of thermodynamics in the presence of correlations. Nat. Commun. 8, 2180 (2017).  https://doi.org/10.1038/s41467-017-02370-x
  13. 13.
    M. Horodecki, J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 2059 (2013).  https://doi.org/10.1038/ncomms3059
  14. 14.
    F.G.S.L. Brandao, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, The resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013).  https://doi.org/10.1103/PhysRevLett.111.250404
  15. 15.
    A.E. Allahverdyan, K.V. Hovhannisyan, D. Janzing, G. Mahler, Thermodynamic limits of dynamic cooling. Phys. Rev. E 84 (2011).  https://doi.org/10.1103/physreve.84.041109
  16. 16.
    D. Reeb, M.M. Wolf, An improved Landauer principle with finite-size corrections. New J. Phys. 16, 103011 (2014).  https://doi.org/10.1088/1367-2630/16/10/103011
  17. 17.
    J. Scharlau, M.P. Mueller, Quantum horn’s lemma, finite heat baths, and the third law of thermodynamics. Quantum 2, 54 (2018).  https://doi.org/10.22331/q-2018-02-22-54
  18. 18.
    M.P. Mueller, Correlating thermal machines and the second law at the nanoscale. Phys. Rev. X 8, 041051 (2018).  https://doi.org/10.1103/PhysRevX.8.041051
  19. 19.
    D. Janzing, P. Wocjan, R. Zeier, R. Geiss, Th. Beth, Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39, 2717 (2000). arXiv:quant-ph/0002048
  20. 20.
    F.G.S.L. Brandao, M. Horodecki, N.H.Y. Ng, J. Oppenheim, S. Wehner, The second laws of quantum thermodynamics. PNAS 112, 3275 (2015).  https://doi.org/10.1073/pnas.1411728112
  21. 21.
    L.J. Schulman, U.V. Vazirani, Molecular scale heat engines and scalable quantum computation, in Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing - STOC 99 (1999).  https://doi.org/10.1145/301250.301332
  22. 22.
    P.O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen, Algorithmic cooling and scalable NMR quantum computers. PNAS 99, 33883393 (2002).  https://doi.org/10.1073/pnas.241641898
  23. 23.
    L.J. Schulman, T. Mor, Y. Weinstein, Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94 (2005).  https://doi.org/10.1103/physrevlett.94.120501
  24. 24.
    S. Raeisi, M. Mosca, Asymptotic bound for heat-bath algorithmic cooling. Phys. Rev. Lett. 114 (2015).  https://doi.org/10.1103/physrevlett.114.100404
  25. 25.
    R. Alicki, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamics of quantum informational systems - Hamiltonian description. Open Syst. Inf. Dyn. 11, 205 (2004), arXiv:quant-ph/0402012
  26. 26.
    P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).  https://doi.org/10.1038/ncomms5185
  27. 27.
    M. Tomamichel, Quantum Information Processing with Finite Resources. SpringerBriefs in Mathematical Physics (Springer, Berlin, 2016).  https://doi.org/10.1007/978-3-319-21891-5
  28. 28.
    C. Sparaciari, D. Jennings, J. Oppenheim, Energetic instability of passive states in thermodynamics. Nat. Commun. 8, 1895 (2017).  https://doi.org/10.1038/s41467-017-01505-4
  29. 29.
    H. Wilming, R. Gallego, J. Eisert, Axiomatic characterization of the quantum relative entropy and free energy. Entropy 19, 241 (2017).  https://doi.org/10.3390/e19060241
  30. 30.
    N. Freitas, J.P. Paz, Fundamental limits for cooling of linear quantum refrigerators. Phys. Rev. E 95, 012146 (2017).  https://doi.org/10.1103/PhysRevE.95.012146
  31. 31.
    G. Benenti, G. Strini, Dynamical Casimir effect and minimal temperature in quantum thermodynamics. Phys. Rev. A 91, 020502 (2015).  https://doi.org/10.1103/PhysRevA.91.020502
  32. 32.
    M. Kolar, R. Alicki, D. Gelbwaser, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012).  https://doi.org/10.1103/PhysRevLett.109.090601
  33. 33.
    A.E. Allahverdyan, K.V. Hovhannisyan, G. Mahler, Comment on cooling by heating: refrigeration powered by photons. Phys. Rev. Lett. 109 (2012).  https://doi.org/10.1103/physrevlett.109.248903
  34. 34.
    A. Levy, R. Alicki, R. Kosloff, Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 85, 061126 (2012).  https://doi.org/10.1103/PhysRevE.85.061126
  35. 35.
    F. Diedrich, J.C. Bergquist, W.M. Itano, D.J. Wineland, Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403 (1989).  https://doi.org/10.1103/PhysRevLett.62.403
  36. 36.
    S.E. Hamann, D.L. Haycock, G. Klose, P.H. Pax, I.H. Deutsch, P.S. Jessen, Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149 (1998).  https://doi.org/10.1103/PhysRevLett.80.4149
  37. 37.
    J.D. Teufel, T. Donner, D. Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011).  https://doi.org/10.1038/nature10261
  38. 38.
    J. Eschner, G. Morigi, F. Schmidt-Kaler, R. Blatt, Laser cooling of trapped ions. JOSA B 20, 1003–1015 (2003).  https://doi.org/10.1364/JOSAB.20.001003
  39. 39.
    F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).  https://doi.org/10.1103/PhysRevLett.99.093902
  40. 40.
    I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).  https://doi.org/10.1103/PhysRevLett.99.093901

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nahuel Freitas
    • 1
    Email author
  • Rodrigo Gallego
    • 2
  • Lluís Masanes
    • 3
  • Juan Pablo Paz
    • 4
    • 5
  1. 1.Theoretische PhysikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Dahlem Center for Complex Quantum SystemsFreie Universität BerlinBerlinGermany
  3. 3.Department of Physics and AstronomyUniversity College LondonLondonUK
  4. 4.Departamento de Física, FCEyNUBABuenos AiresArgentina
  5. 5.Instituto de Física de Buenos AiresUBA CONICETBuenos AiresArgentina

Personalised recommendations