Advertisement

Hamiltonian of Mean Force for Strongly-Coupled Systems

  • Harry J. D. MillerEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 195)

Abstract

A central assumption in macroscopic thermodynamics is the weak coupling approximation, which posits that the equilibrium properties of a system are not influenced by the interactions with its surrounding environment. However, for nanoscale systems, interactions appearing in the total Hamiltonian may be comparable in magnitude to the systems own internal energy. The presence of non-negligible interactions can alter the system’s equilibrium state, causing deviations from the standard Gibbs distribution. This motivates alternative statistical mechanical definitions of the thermodynamic potentials, such as the free energy and entropy, which can be achieved through an identification of the system’s Hamiltonian of mean force. This operator provides an effective thermodynamic description of the system both in and away from equilibrium, taking into account the strength of coupling with the environment. Here we give an overview of the properties of this operator, and demonstrate its usefulness in extending thermodynamics to the strong-coupling regime in both quantum and classical systems.

References

  1. 1.
    A. Einstein, in Autobiographical Notes, ed. by P.A. Schilpp (Open Court Publishing, La Salle, 1979)Google Scholar
  2. 2.
    L. Landau, E. Lifshitz, Course of Theoretical Physics: Statistical Physics, vol. 5 (Pergamon, Oxford, 1958), p. 76Google Scholar
  3. 3.
    A.B. Kolomeisky, M.E. Fisher, Ann. Rev. Phys. Chem. 58, 675 (2007).  https://doi.org/10.1146/annurev.physchem.58.032806.104532
  4. 4.
    D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Nature 437, 231 (2005).  https://doi.org/10.1038/nature04061
  5. 5.
    R. Kosloff, A. Levy, Ann. Rev. Phys. Chem. 65, 365 (2013).  https://doi.org/10.1146/annurev-physchem-040513-103724
  6. 6.
    P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015).  https://doi.org/10.1038/nphys3167
  7. 7.
    C. Jarzynski, Phys. Rev. X 7, 011008 (2017).  https://doi.org/10.1103/PhysRevX.7.011008
  8. 8.
    K. Huang, Lectures on Statistical Physics and Protein Folding (World Scientific Publishing, Singapore, 2005)Google Scholar
  9. 9.
    G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985).  https://doi.org/10.1103/PhysRevLett.55.2273
  10. 10.
    J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935).  https://doi.org/10.1063/1.1749657
  11. 11.
    S. Hilbert, P. Hänggi, J. Dunkel, Phys. Rev. E 90, 062116 (2014).  https://doi.org/10.1103/PhysRevE.90.062116
  12. 12.
    H. Touchette, J. Stat. Phys. 159, 987 (2015).  https://doi.org/10.1007/s10955-015-1212-2
  13. 13.
    C. Jarzynski, J. Stat. Mech. 2004, P09005 (2004).  https://doi.org/10.1088/1742-5468/2004/09/P09005
  14. 14.
    M.F. Gelin, M. Thoss, Phys. Rev. E 79, 051121 (2009).  https://doi.org/10.1103/PhysRevE.79.051121
  15. 15.
    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009a).  https://doi.org/10.1103/PhysRevLett.102.210401
  16. 16.
    A. Caldeira, A. Leggett, Phys. A 121, 587 (1983).  https://doi.org/10.1016/0378-4371(83)90013-4
  17. 17.
    H. Grabert, U. Weiss, P. Talkner, Z. Phys. B 55, 87 (1984).  https://doi.org/10.1007/BF01307505
  18. 18.
    B.L. Hu, J.P. Paz, Phys. Rev. D 45, 2843 (1992).  https://doi.org/10.1103/PhysRevD.45.2843
  19. 19.
    A.D.O. Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010).  https://doi.org/10.1038/nature08967
  20. 20.
    T.G. Philbin, J. Anders, J. Phys. A Math. Theor. 49, 215303 (2016).  https://doi.org/10.1088/1751-8113/49/21/215303
  21. 21.
    P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech. 2009, P02025 (2009).  https://doi.org/10.1088/1742-5468/2009/02/P02025
  22. 22.
    J.L. Lebowitz, L. Pastur, J. Phys. A 48, 265201 (2015).  https://doi.org/10.1088/1751-8113/48/26/265201
  23. 23.
    M. Kliesch, C. Gogolin, M.J. Kastoryano, A. Riera, J. Eisert, Phys. Rev. X 4, 031019 (2014).  https://doi.org/10.1103/PhysRevX.4.031019
  24. 24.
    Y. Subasi, C.H. Fleming, J.M. Taylor, B.L. Hu, Phys. Rev. E 061132, 061132 (2012).  https://doi.org/10.1103/PhysRevE.86.061132
  25. 25.
    C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016).  https://doi.org/10.1088/0034-4885/79/5/056001
  26. 26.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957).  https://doi.org/10.1103/PhysRev.106.620
  27. 27.
    U. Seifert, Phys. Rev. Lett. 116, 020601 (2016).  https://doi.org/10.1103/PhysRevLett.116.020601
  28. 28.
    T.G. Philbin, N. J. Phys. 13, 063026 (2011).  https://doi.org/10.1088/1367-2630/13/6/063026
  29. 29.
    R.M. Wilcox, J. Math. Phys. 8, 962 (1967).  https://doi.org/10.1063/1.1705306
  30. 30.
    H.J.D. Miller, J. Anders, Nat. Comm. 9, 2203 (2018).  https://doi.org/10.1038/s41467-018-04536-7
  31. 31.
    P. Ullersma, Physica 32, 27 (1966).  https://doi.org/10.1016/0031-8914(66)90102-9
  32. 32.
    M.J. Donald, J. Stat. Phys. 49, 81 (1987).  https://doi.org/10.1007/BF01009955
  33. 33.
    M. Campisi, D. Zueco, P. Talkner, Chem. Phys. 375, 187 (2010).  https://doi.org/10.1016/j.chemphys.2010.04.026
  34. 34.
    G. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2008).  https://doi.org/10.1103/PhysRevE.79.061105
  35. 35.
    M. Campisi, P. Talkner, P. Hänggi, J. Phys. A Math. Theor. 42, 392002 (2009b).  https://doi.org/10.1088/1751-8113/42/39/392002
  36. 36.
    I. Frérot, T. Roscilde, Phys. Rev. B 94, 075121 (2016).  https://doi.org/10.1103/PhysRevB.94.075121
  37. 37.
    C. Jarzynski, Ann. Rev. Condens. Matter Phys. 2, 329 (2011).  https://doi.org/10.1146/annurev-conmatphys-062910-140506
  38. 38.
    G. Crooks, Phys. Rev. E 60, 2721 (1999).  https://doi.org/10.1103/PhysRevE.60.2721
  39. 39.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690
  40. 40.
    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007).  https://doi.org/10.1103/PhysRevE.75.050102
  41. 41.
    H.J. Miller, J. Anders, Phys. Rev. E 95, 062123 (2017).  https://doi.org/10.1103/PhysRevE.95.062123
  42. 42.
    P. Talkner, P. Hanggi, Phys. Rev. E 94, 022143 (2016).  https://doi.org/10.1103/PhysRevE.94.022143
  43. 43.
    P. Strasberg, M. Esposito, Phys. Rev. E 95, 062101 (2017).  https://doi.org/10.1103/PhysRevE.95.062101
  44. 44.
    U. Seifert, Eur. Phys. J. B 64, 423 (2008).  https://doi.org/10.1140/epjb/e2008-00001-9
  45. 45.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).  https://doi.org/10.1088/0034-4885/75/12/126001
  46. 46.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. Lett. 85, 1799 (2000).  https://doi.org/10.1103/PhysRevLett.85.1799
  47. 47.
    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).  https://doi.org/10.1103/PhysRevLett.95.040602
  48. 48.
    E. Aurell, Phys. Rev. E. 97, 042112 (2018).  https://doi.org/10.1103/PhysRevE.97.042112

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations